Publications by authors named "Ana-Belen Martinez-Monino"

Nudix (for nucleoside diphosphatases linked to other moieties, X) hydrolases are a diverse family of proteins capable of cleaving an enormous variety of substrates, ranging from nucleotide sugars to NAD-capped RNAs. Although all the members of this superfamily share a common conserved catalytic motif, the Nudix box, their substrate specificity lies in specific sequence traits, which give rise to different subfamilies. Among them, NADH pyrophosphatases or diphosphatases (NADDs) are poorly studied and nothing is known about their distribution.

View Article and Find Full Text PDF

Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria.

View Article and Find Full Text PDF

Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity.

View Article and Find Full Text PDF

NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria.

View Article and Find Full Text PDF

Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD(+) by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme.

View Article and Find Full Text PDF