Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.
View Article and Find Full Text PDFPlants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.
View Article and Find Full Text PDFThe PII protein is an integrator of central metabolism and energy levels. In Arabidopsis, allosteric sensing of cellular energy and carbon levels alters the ability of PII to interact with target enzymes such as N-acetyl-l-glutamate kinase and heteromeric acetyl-coenzyme A carboxylase, thereby modulating the biological activity of these plastidial ATP- and carbon-consuming enzymes. A quantitative reverse transcriptase-polymerase chain reaction approach revealed a threefold induction of the AtGLB1 gene (At4g01900) encoding PII during early seed maturation.
View Article and Find Full Text PDFThe PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed.
View Article and Find Full Text PDFThe metabolic control of the interaction between ArabidopsisN-acetyl-l-glutamate kinase (NAGK) and the PII protein has been studied. Both gel exclusion and affinity chromatography analyses of recombinant, affinity-purified PII (trimeric complex) and NAGK (hexameric complex) showed that NAGK strongly interacted with PII only in the presence of Mg-ATP, and that this process was reversed by 2-oxoglutarate (2-OG). Furthermore, metabolites such as arginine, glutamate, citrate, and oxalacetate also exerted a negative effect on the PII-NAGK complex formation in the presence of Mg-ATP.
View Article and Find Full Text PDF