Publications by authors named "Ana de Ory"

Lipid droplets (LDs) are fat storage organelles critical for energy and lipid metabolism. Upon nutrient exhaustion, cells consume LDs via gradual lipolysis or via lipophagy, the en bloc uptake of LDs into the vacuole. Here, we show that LDs dock to the vacuolar membrane via a contact site that is required for lipophagy in yeast.

View Article and Find Full Text PDF

Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed β,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure.

View Article and Find Full Text PDF

The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis.

View Article and Find Full Text PDF

Abasic (AP) sites, the most common DNA lesions are frequently associated with double strand breaks (DSBs) and can pose a block to the final ligation. In many prokaryotes, nonhomologous end joining (NHEJ) repair of DSBs relies on a two-component machinery constituted by the ring-shaped DNA-binding Ku that recruits the multicatalytic protein Ligase D (LigD) to the ends. By using its polymerization and ligase activities, LigD fills the gaps that arise after realignment of the ends and seals the resulting nicks.

View Article and Find Full Text PDF

Phaeocystis globosa virus 16T is a giant virus that belongs to the so-called nucleo-cytoplasmic large DNA virus (NCLDV) group. Its linear dsDNA genome contains an almost full complement of genes required to participate in viral base excision repair (BER). Among them is a gene coding for a bimodular protein consisting of an N-terminal Polβ-like core fused to a C-terminal domain (PgVPolX), which shows homology with NAD-dependent DNA ligases.

View Article and Find Full Text PDF

Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction.

View Article and Find Full Text PDF

Intracellular reactive oxygen species as well as the exposure to harsh environmental conditions can cause, in the single chromosome of Bacillus subtilis spores, the formation of apurinic/apyrimidinic (AP) sites and strand breaks whose repair during outgrowth is crucial to guarantee cell viability. Whereas double-stranded breaks are mended by the nonhomologous end joining (NHEJ) system composed of an ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku, repair of AP sites would rely on an AP endonuclease or an AP-lyase, a polymerase and a ligase. Here we show that B.

View Article and Find Full Text PDF

Fusarium verticillioides and Fusarium proliferatum are important phytopathogens which contaminate cereals in the Mediterranean climatic region with fumonisins. In this study we examined the interaction between the fungicide efficacy of tebuconazole and water potential (Ψw) (-0.7-7.

View Article and Find Full Text PDF