Publications by authors named "Ana Y Estevez"

Cerium oxide nanoparticles (CeNPs) exhibit redox capacity with efficacy in disease models of oxidative stress. Here we compare, in parallel, three CeNP formulations with distinct chemical stabilizers and size. assays revealed antioxidant activity from all the CeNPs, but when administered to mice with a reactive oxygen species (ROS) mediated model of multiple sclerosis, only custom-synthesized Cerion NRx (CNRx) citrate-EDTA stabilized CeNPs provided protection against disease.

View Article and Find Full Text PDF

Cerium oxide (CeO) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (CeNPs) neutralize reactive oxygen and nitrogen species. Since oxidative stress plays a role in amyotrophic lateral sclerosis (ALS) in humans and in the SOD1 mouse model of ALS, we tested whether administration of CeNPs would improve survival and reduce disease severity in SOD1 transgenic mice. Twice a week intravenous treatment of SOD1 mice with CeNPs started at the onset of muscle weakness preserved muscle function and increased longevity in males and females.

View Article and Find Full Text PDF

1,4,5-trisphosphate (IP(3))-dependent Ca(2+) signaling regulates gonad function, fertility, and rhythmic posterior body wall muscle contraction (pBoc) required for defecation in Caenorhabditis elegans. Store-operated Ca(2+) entry (SOCE) is activated during endoplasmic reticulum (ER) Ca(2+) store depletion and is believed to be an essential and ubiquitous component of Ca(2+) signaling pathways. SOCE is thought to function to refill Ca(2+) stores and modulate Ca(2+) signals.

View Article and Find Full Text PDF

Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45-50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca(2+) oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca(2+) signaling.

View Article and Find Full Text PDF

Inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in Caenorhabditis elegans intestinal epithelial cells regulate the nematode defecation cycle. The role of plasma membrane ion channels in intestinal cell oscillatory Ca2+ signalling is unknown. We have shown previously that cultured intestinal cells express a Ca2+-selective conductance, I(ORCa), that is biophysically similar to TRPM7 currents.

View Article and Find Full Text PDF

The nematode Caenorhabditis elegans offers significant experimental advantages for defining the genetic basis of diverse biological processes. Genetic and physiological analyses have demonstrated that inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in intestinal epithelial cells play a central role in regulating the nematode defecation cycle, an ultradian rhythm with a periodicity of 45-50 s. Patch clamp studies combined with behavioral assays and forward and reverse genetic screening would provide a powerful approach for defining the molecular details of oscillatory Ca2+ signaling.

View Article and Find Full Text PDF