Publications by authors named "Ana Villar-Garea"

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system.

View Article and Find Full Text PDF

The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core.

View Article and Find Full Text PDF

Centromeres are essential for ensuring proper chromosome segregation in eukaryotes. Their definition relies on the presence of a centromere-specific H3 histone variant CenH3, known as CENP-A in mammals. Its overexpression in aggressive cancers raises questions concerning its effect on chromatin dynamics and contribution to tumorigenesis.

View Article and Find Full Text PDF

Chromatin is unevenly distributed within the eukaryote nucleus and it contributes to the formation of morphologically and functionally distinct substructures, called chromatin domains and nuclear bodies. Here we describe an approach to assess specific chromatin features, the histone posttranslational modifications (PTMs), of the largest nuclear sub-compartment, the nucleolus. In this chapter, methods for the isolation of nucleolus-associated chromatin from native or formaldehyde-fixed cells and the effect of experimental procedures on the outcome of mass spectrometry analysis of histone PTMs are compared.

View Article and Find Full Text PDF

Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry.

View Article and Find Full Text PDF

Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo. Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications.

View Article and Find Full Text PDF

Histone N-termini undergo diverse post-translational modifications that significantly extend the information potential of the genetic code. Moreover, they appear to mark specific chromatin regions, modulating epigenetic control, lineage commitment, and overall function of chromosomes. It is widely accepted that histone modifications affect chromatin function, but the exact mechanisms of how modifications on histone tails and specific combinations of modifications are generated, and how they cross-talk with one another, is still enigmatic.

View Article and Find Full Text PDF

The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear.

View Article and Find Full Text PDF

The nucleolus is the site of ribosome synthesis in the nucleus, whose integrity is essential. Epigenetic mechanisms are thought to regulate the activity of the ribosomal RNA (rRNA) gene copies, which are part of the nucleolus. Here we show that human cells lacking DNA methyltransferase 1 (Dnmt1), but not Dnmt33b, have a loss of DNA methylation and an increase in the acetylation level of lysine 16 histone H4 at the rRNA genes.

View Article and Find Full Text PDF

Systems analysis of body fluids by mass spectrometry (MS) is an upcoming field of biomarker research. This approach is extremely attractive because it does not require biomarker candidates and the sample preparation is simple. However, during the development of the technique strong critical comments were made on the poor reproducibility, the special characteristics of blood as a source of peptides and on the frequent non-adequate statistical analysis of the data.

View Article and Find Full Text PDF

The biological function of many proteins is often regulated through posttranslational modifications (PTMs). Frequently different modifications influence each other and lead to an intricate network of interdependent modification patterns that affect protein-protein interactions, enzymatic activities and sub-cellular localizations. One of the best-studied class of proteins that is affected by PTMs and combinations thereof are the histone molecules.

View Article and Find Full Text PDF

Nuclear events such as chromatin condensation, DNA cleavage at internucleosomal sites, and histone release from chromatin are recognized as hallmarks of apoptosis. However, there is no complete understanding of the molecular events underlying these changes. It is likely that epigenetic changes such as DNA methylation and histone modifications that are involved in chromatin dynamics and structure are also involved in the nuclear events described.

View Article and Find Full Text PDF

CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors.

View Article and Find Full Text PDF

Cancer is as much an epigenetic disease as it is a genetic and cytogenetic disease. The discovery that drastic changes in DNA methylation and histone modifications are commonly found in human tumors has inspired various laboratories and pharmaceutical companies to develop and study epigenetic drugs. One of the most promising groups of agents is the inhibitors of histone deacetylases (HDACs), which have different biochemical and biologic properties but have a single common activity: induction of acetylation in histones, the key proteins in nucleosome and chromatin structure.

View Article and Find Full Text PDF

DNA methyltransferase 1 (DNMT1) plays an essential role in murine development and is thought to be the enzyme primarily responsible for maintenance of the global methylation status of genomic DNA. However, loss of DNMT1 in human cancer cells affects only the methylation status of a limited number of pericentromeric sequences. Here we show that human cancer cells lacking DNMT1 display at least two important differences with respect to wild type cells: a profound disorganization of nuclear architecture, and an altered pattern of histone H3 modification that results in an increase in the acetylation and a decrease in the dimethylation and trimethylation of lysine 9.

View Article and Find Full Text PDF

The present work investigates the occurrence and significance of aberrant DNA methylation patterns during early stages of atherosclerosis. To this end, we asked whether the genetically atherosclerosis-prone APOE-null mice show any changes in DNA methylation patterns before the appearance of histologically detectable vascular lesion. We exploited a combination of various techniques: DNA fingerprinting, in vitro methyl-accepting assay, 5-methylcytosine quantitation, histone post-translational modification analysis, Southern blotting, and PCR.

View Article and Find Full Text PDF

Methylation-associated silencing of tumor suppressor genes is recognized as being a molecular hallmark of human cancer. Unlike genetic alterations, changes in DNA methylation are potentially reversible. This possibility has attracted considerable attention from a therapeutics standpoint.

View Article and Find Full Text PDF

DNA hypermethylation at the CpG dinucleotides clustered in "islands" in the promoter regions of genes causes transcriptional repression through the remodelling of chromatin. Aberrant methylation patterns of tumor suppressor genes and their subsequent silencing constitute a common feature of many cancers. Thus, the search for drugs that interfere in methylation-mediated gene repression has become one of the major goals in the design of cancer therapies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionekrusi0go61rimtaludmflgib1tg2mub): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once