Introduction: Diagnosis of myelodysplastic syndromes (MDSs) when anemia is the only abnormality can be complicated. The aim of our study was to investigate the primary causes of anemia and/or macrocytosis of uncertain etiology.
Methods: We conducted a multicenter, prospective study over 4 months in three hematology laboratories.
Background And Purpose: Opioid δ receptor agonists are potent antihyperalgesics in chronic pain models, but tolerance develops after prolonged use. Previous evidence indicates that distinct forms of tolerance occur depending on the internalization properties of δ receptor agonists. As arrestins are important in receptor internalization, we investigated the role of arrestin 2 (β-arrestin 1) in mediating the development of tolerance induced by high- and low-internalizing δ receptor agonists.
View Article and Find Full Text PDFDelta opioid receptors (δORs) regulate a number of physiological functions, and agonists for this receptor are being pursued for the treatment of mood disorders, chronic pain, and migraine. A major challenge to the development of these compounds is that, like many G-protein coupled receptors (GPCRs), agonists at the δOR can induce very different signaling and receptor trafficking events. This concept, known as ligand-directed signaling, functional selectivity, or biased agonism, can result in different agonists producing highly distinct behavioral consequences.
View Article and Find Full Text PDFIn recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations.
View Article and Find Full Text PDFUnlabelled: Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance.
View Article and Find Full Text PDFIn the nervous system, the glutamate N-methyl-D-aspartate receptor (NMDAR) restricts the activity of the mu-opioid receptor (MOR). Both receptors are present in midbrain periaqueductal grey (PAG) neurons, an area that plays a central role in the supraspinal antinociceptive effects of opioids. The cross-talk that occurs between these receptors is sustained by the MOR-associated histidine triad nucleotide binding protein 1 (HINT1), which displays nucleoside phosphoramidase and acyl-AMP hydrolase activity.
View Article and Find Full Text PDFBackground: G protein-coupled receptors (GPCRs) are the targets of a large number of drugs currently in therapeutic use. Likewise, the glutamate ionotropic N-methyl-D-aspartate receptor (NMDAR) has been implicated in certain neurological disorders, such as neurodegeration, neuropathic pain and mood disorders, as well as psychosis and schizophrenia. Thus, there is now an important need to characterize the interactions between GPCRs and NMDARs.
View Article and Find Full Text PDFAims: Overactivation of glutamate N-methyl-D-aspartate receptor (NMDAR) increases the cytosolic concentrations of calcium and zinc, which significantly contributes to neural death. Since cannabinoids prevent the NMDAR-mediated increase in cytosolic calcium, we investigated whether they also control the rise of potentially toxic free zinc ions, as well as the processes implicated in this phenomenon.
Results: The cannabinoid receptors type 1 (CNR1) and NMDARs are cross-regulated in different regions of the nervous system.
The RGSZ2 gene, a regulator of G protein signaling, has been implicated in cognition, Alzheimer's disease, panic disorder, schizophrenia and several human cancers. This 210 amino acid protein is a GTPase accelerating protein (GAP) on Gαi/o/z subunits, binds to the N terminal of neural nitric oxide synthase (nNOS) negatively regulating the production of nitric oxide, and binds to the histidine triad nucleotide-binding protein 1 at the C terminus of different G protein-coupled receptors (GPCRs). We now describe a novel regulatory mechanism of RGS GAP function through the covalent incorporation of Small Ubiquitin-like MOdifiers (SUMO) into RGSZ2 RGS box (RH) and the SUMO non covalent binding with SUMO-interacting motifs (SIM): one upstream of the RH and a second within this region.
View Article and Find Full Text PDFThe capacity of opioids to alleviate inflammatory pain is negatively regulated by the glutamate-binding N-methyl-D-aspartate receptor (NMDAR). Increased activity of this receptor complicates the clinical use of opioids to treat persistent neuropathic pain. Immunohistochemical and ultrastructural studies have demonstrated the coexistence of both receptors within single neurons of the CNS, including those in the mesencephalic periaqueductal gray (PAG), a region that is implicated in the opioid control of nociception.
View Article and Find Full Text PDFUnlabelled: Morphine increases the production of nitric oxide (NO) via the phosphoinositide 3-kinase/Akt/neural nitric oxide synthase (nNOS) pathway. Subsequently, NO enhances N-methyl-D-aspartate receptor (NMDAR)/calmodulin-dependent protein kinase II (CaMKII) cascade, diminishing the strength of morphine-activated Mu-opioid receptor (MOR) signaling. During this process, NO signaling is restricted by the association of nNOS to the MOR.
View Article and Find Full Text PDFA series of pharmacological and physiological studies have demonstrated the functional cross-regulation between MOR and NMDAR. These receptors coexist at postsynaptic sites in midbrain periaqueductal grey (PAG) neurons, an area implicated in the analgesic effects of opioids like morphine. In this study, we found that the MOR-associated histidine triad nucleotide-binding protein 1 (HINT1) is essential for maintaining the connection between the NMDAR and MOR.
View Article and Find Full Text PDFBackground: Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal.
View Article and Find Full Text PDF