J Exp Zool A Ecol Integr Physiol
October 2024
Salinity can be an environmental stressor for anurans, as their highly permeable skin makes them prone to osmotic stress when exposed to saline conditions. However, certain anuran species have colonized areas near saltwater habitats, suggesting an ability to acclimate to saline conditions. Here, we evaluated physiological and behavioral responses to saline conditions in adult Cuban treefrogs (Osteopilus septentrionalis), an invasive anuran found throughout Florida.
View Article and Find Full Text PDFTwo ranavirus isolates were recovered from anuran and salamander samples collected during an amphibian mass mortality event in North-Central Florida in 2021. Phylogenetic analyses of the full genomes confirmed that the two isolates were nearly identical and strains of the species .
View Article and Find Full Text PDFNorth American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen (). To predict potential dispersal of spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts.
View Article and Find Full Text PDFThe bacterial communities of the amphibian skin (i.e., the bacteriome) are critical to the host's innate immune system.
View Article and Find Full Text PDFThe chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen.
View Article and Find Full Text PDFMicrobiomes are major determinants of host growth, development and survival. In amphibians, host-associated bacteria in the skin can inhibit pathogen infection, but many processes can influence the structure and composition of the community. Here we quantified the shifts in skin-associated bacteria across developmental stages in the striped newt (), a threatened salamander species with a complex life history and vulnerable to infection by the amphibian chytrid fungus and ranavirus.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2023
Naive multi-host communities include species that may differentially maintain, transmit and amplify novel pathogens; therefore, we expect species to fill distinct roles during infectious disease emergence. Characterizing these roles in wildlife communities is challenging because most disease emergence events are unpredictable. Here, we used field-collected data to investigate how species-specific attributes influenced the degree of exposure, probability of infection, and pathogen intensity, during the emergence of the fungal pathogen () in a highly diverse tropical amphibian community.
View Article and Find Full Text PDFSymbiotic interactions can determine the evolutionary trajectories of host species, influencing genetic variation through selection and changes in demography. In the context of strong selective pressures such as those imposed by infectious diseases, symbionts providing defences could contribute to increase host fitness upon pathogen emergence. Here, we generated genome-wide data of an amphibian species to find evidence of evolutionary pressures driven by two skin symbionts: a batrachochytrid fungal pathogen and an antifungal bacterium.
View Article and Find Full Text PDFWhile some pathogens are limited to single species, others can colonize many hosts, likely contributing to the emergence of novel disease outbreaks. Despite this biodiversity threat, traits associated with host niche expansions are not well understood in multihost pathogens. Here, we aimed to uncover functional machinery driving multihost invasion by focusing on Batrachochytrium dendrobatidis (Bd), a pathogen that infects the skin of hundreds of amphibians worldwide.
View Article and Find Full Text PDFMolecular technologies have revolutionized the field of wildlife disease ecology, allowing the detection of outbreaks, novel pathogens, and invasive strains. In particular, metabarcoding approaches, defined here as tools used to amplify and sequence universal barcodes from a single sample (e.g.
View Article and Find Full Text PDFA persistent 2-month long outbreak of Ranavirus in a natural community of amphibians contributed to a mass die-off of gopher frog tadpoles (Lithobates capito) and severe disease in striped newts (Notophthalmus perstriatus) in Florida. Ongoing mortality in L. capito and disease signs in N.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
December 2020
Understanding the responses of naïve communities to the invasion of multihost pathogens requires accurate estimates of susceptibility across taxa. In the Americas, the likely emergence of a second amphibian pathogenic fungus (Batrachochytrium salamandrivorans, Bsal) calls for new ways of prioritizing disease mitigation among species due to the high diversity of naïve hosts with prior B. dendrobatidis (Bd) infections.
View Article and Find Full Text PDFAs globalization lowers geographic barriers to movement, coinfection with novel and enzootic pathogens is increasingly likely. Novel and enzootic pathogens can interact synergistically or antagonistically, leading to increased or decreased disease severity. Here we examine host immune responses to coinfection with two closely related fungal pathogens: Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal).
View Article and Find Full Text PDFLambert question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts.
View Article and Find Full Text PDFand are important amphibian pathogens responsible for morbidity and mortality in free-ranging and captive frogs, salamanders, and caecilians. While has a widespread global distribution, has only been detected in amphibians in Asia and Europe. Although molecular detection methods for these fungi are well-characterized, differentiation of the morphologically similar organisms in the tissues of affected amphibians is incredibly difficult.
View Article and Find Full Text PDFAnthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia.
View Article and Find Full Text PDFAnimal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches.
View Article and Find Full Text PDFEmerging infectious pathogens are responsible for some of the most severe host mass mortality events in wild populations. Yet, effective pathogen control strategies are notoriously difficult to identify, in part because quantifying and forecasting pathogen spread and disease dynamics is challenging. Following an outbreak, hosts must cope with the presence of the pathogen, leading to host-pathogen coexistence or extirpation.
View Article and Find Full Text PDFChytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has led to devastating declines in amphibian populations worldwide. Current theory predicts that Bd infections are maintained through both reproduction on the host's skin and reinfection from sources outside of the host. To investigate the importance of external reinfection on pathogen burden, we infected captive-bred individuals of the highly susceptible Panamanian Golden Frog, Atelopus glyphus, and wild-caught glass frogs, Espadarana prosoblepon, with Bd.
View Article and Find Full Text PDFThe fungal pathogen () infects hundreds of amphibian species and is implicated in global amphibian declines. is comprised of several lineages that differ in pathogenicity, thus, identifying which strains are present in a given amphibian community is essential for understanding host-pathogen dynamics. The presence of has been confirmed in Central Africa, yet vast expanses of this region have not yet been surveyed for prevalence, and the genetic diversity of is largely unknown in this part of the world.
View Article and Find Full Text PDFHost-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd).
View Article and Find Full Text PDFFluctuating environments can modulate host-pathogen interactions by providing a temporary advantage to one of the interacting organisms. However, we know very little about how environmental conditions facilitate beneficial interactions between hosts and their microbial communities, resulting in individual persistence with a particular pathogen. Here, we experimentally infected Eleutherodactylus coqui frogs with the fungal pathogen Batrachochytrium dendrobatidis (Bd) under environmental conditions known to confer the survival advantage to the host during the warm-wet season, or alternatively to the pathogen during the cool-dry season.
View Article and Find Full Text PDFPathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15).
View Article and Find Full Text PDFRecently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages.
View Article and Find Full Text PDFThe amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment.
View Article and Find Full Text PDF