Publications by authors named "Ana Toplak"

Omniligase-1 is a broadly applicable enzyme for peptide bond formation between an activated acyl donor peptide and a non-protected acyl acceptor peptide. The enzyme is derived from an earlier subtilisin variant called peptiligase by several rounds of protein engineering aimed at increasing synthetic yields and substrate range. To examine the contribution of individual mutations on S/H ratio and substrate scope in peptide synthesis, we selected peptiligase variant M222P/L217H as a starting enzyme and introduced successive mutations.

View Article and Find Full Text PDF

The renaissance of peptides as prospective therapeutics has fostered the development of novel strategies for their synthesis and modification. In this context, besides the development of new chemical peptide ligation approaches, especially the use of enzymes as a versatile tool has gained increased attention. Nowadays, due to their inherent properties such as excellent regio- and chemoselectivity, enzymes represent invaluable instruments in both academic and industrial laboratories.

View Article and Find Full Text PDF

Disulfide-rich macrocyclic peptides-cyclotides, for example-represent a promising class of molecules with potential therapeutic use. Despite their potential their efficient synthesis at large scale still represents a major challenge. Here we report new chemoenzymatic strategies using peptide ligase variants-inter alia, omniligase-1-for the efficient and scalable one-pot cyclization and folding of the native cyclotides MCoTI-II, kalata B1 and variants thereof, as well as of the θ-defensin RTD-1.

View Article and Find Full Text PDF

The synthesis of thymosin-α, an acetylated 28 amino acid long therapeutic peptide, via conventional chemical methods is exceptionally challenging. The enzymatic coupling of unprotected peptide segments in water offers great potential for a more efficient synthesis of peptides that are difficult to synthesize. Based on the design of a highly engineered peptide ligase, we developed a fully convergent chemo-enzymatic peptide synthesis (CEPS) process for the production of thymosin-αvia a 14-mer + 14-mer segment condensation strategy.

View Article and Find Full Text PDF

The recent advancement of peptide macrocycles as promising therapeutics creates a need for novel methodologies for their efficient synthesis and (large scale) production. Within this context, due to the favorable properties of biocatalysts, enzyme-mediated methodologies have gained great interest. Enzymes such as sortase A, butelase 1, peptiligase and omniligase-1 represent extremely powerful and valuable enzymatic tools for peptide ligation, since they can be applied to generate complex cyclic peptides with exquisite biological activity.

View Article and Find Full Text PDF

With the steadily increasing complexity and quantity requirements for peptides in industry and academia, the efficient and site-selective ligation of peptides and proteins represents a highly desirable goal. Within this context, enzyme-mediated ligation technologies for peptides and proteins have attracted great interest in recent years as they represent an extremely powerful extension to the scope of chemical methodologies (e.g.

View Article and Find Full Text PDF

Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80°C and 60°C in neat acetonitrile with excellent conversion (>90%).

View Article and Find Full Text PDF

Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.

View Article and Find Full Text PDF

Malaria remains one of the most widespread human infectious diseases, and its eradication will largely depend on antimalarial drug discovery. Here, we present a novel approach to the development of the azalide class of antimalarials by describing the design, synthesis, and characterization of novel 2'-O-substituted-9-deoxo-9a-methyl-9a-aza-9a-homoerythromycin A derivatives consisting of different quinoline moieties covalently liked to a 15-membered azalide scaffold at position 2'. By multistep straightforward synthesis, 19 new, stable, and soluble compounds were created and biologically profiled.

View Article and Find Full Text PDF

Malaria remains the most prevalent tropical disease, and due to the spread of resistant parasites novel therapeutics are urgently needed. Azithromycin has shown potential in malaria treatment so we designed hybrid azalide molecules with the aim to improve activity against and selectivity for the malaria parasite. Novel hybrid molecules comprising 4-aminoquinoline moiety covalently liked to 15-membered azalide scaffold at position C-3' were synthesized and biologically evaluated.

View Article and Find Full Text PDF