Background: In type 2 diabetes, insulin resistance is observed, and β-cells are incapable of responding to glycemia demands, leading to hyperglycemia. Although the nature of β-cells dysfunction in this disease is not fully understood, a link between the induction of pancreatic β-cell premature senescence and its metabolic implications has been proposed. This study aimed to understand the relationship between diabetes and pancreatic senescence, particularly at the beginning of the disease.
View Article and Find Full Text PDFAging is a natural physiological process, but one that poses major challenges in an increasingly aging society prone to greater health risks such as diabetes, cardiovascular disease, cancer, frailty, increased susceptibility to infection, and reduced response to vaccine regimens. The loss of capacity for cell regeneration and the surrounding tissue microenvironment itself is conditioned by genetic, metabolic, and even environmental factors, such as nutrition. The senescence of the immune system (immunosenescence) represents a challenge, especially when associated with the presence of age-related chronic inflammation (inflammaging) and affecting the metabolic programming of immune cells (immunometabolism).
View Article and Find Full Text PDFAgeing is a risk factor for chronic diseases including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndrome. Among others, senescence mechanisms have become a target of huge research on the topic of the ageing process. Cellular senescence is a state of an irreversible growth arrest that occurs in response to various forms of cellular stress and is characterized by a pro-inflammatory secretory phenotype.
View Article and Find Full Text PDF