Coma and disorders of consciousness (DoC) are common manifestations of acute severe brain injuries. Research into their neuroanatomical basis can be traced from Hippocrates to the present day. Lesions causing DoC have traditionally been conceptualized as decreasing "alertness" from damage to the ascending arousal system, and/or, reducing level of "awareness" due to structural or functional impairment of large-scale brain networks.
View Article and Find Full Text PDFSpontaneous activity during the resting state, tracked by BOLD fMRI imaging, or shortly rsfMRI, gives rise to brain-wide dynamic patterns of interregional correlations, whose structured flexibility relates to cognitive performance. Here, we analyze resting-state dynamic functional connectivity (dFC) in a cohort of older adults, including amnesic mild cognitive impairment (aMCI, = 34) and Alzheimer's disease (AD, = 13) patients, as well as normal control (NC, = 16) and cognitively "supernormal" controls (SNC, = 10) subjects. Using complementary state-based and state-free approaches, we find that resting-state fluctuations of different functional links are not independent but are constrained by high-order correlations between triplets or quadruplets of functionally connected regions.
View Article and Find Full Text PDFJ Comp Neurol
December 2023
The human cortex has a rich fiber structure as revealed by myelin-staining of histological slices. Myelin also contributes to the image contrast in Magnetic Resonance Imaging (MRI). Recent advances in Magnetic Resonance (MR) scanner and imaging technology allowed the acquisition of an ex-vivo data set at an isotropic resolution of 100 µm.
View Article and Find Full Text PDFThe amygdaloid complex, including the basolateral nucleus (BLA), contributes crucially to emotional and cognitive brain functions, and is a major target of research in both humans and rodents. However, delineating structural amygdala plasticity in both normal and disease-related contexts using neuroimaging has been hampered by the difficulty of unequivocally identifying the boundaries of the BLA. This challenge is a result of the poor contrast between BLA and the surrounding gray matter, including other amygdala nuclei.
View Article and Find Full Text PDFThe rapid evolution of image acquisition and data analytic methods has established in vivo whole-brain tractography as a routine technology over the last 20 years. Imaging-based methods provide an additional approach to classic neuroanatomical studies focusing on biomechanical principles of anatomical organization and can in turn overcome the complexity of inter-individual variability associated with histological and tractography studies. In this work we propose a novel, reliable framework for determining brain tracts resolving the anatomical variance of brain regions.
View Article and Find Full Text PDFIntroduction: Computational brain network modeling using The Virtual Brain (TVB) simulation platform acts synergistically with machine learning (ML) and multi-modal neuroimaging to reveal mechanisms and improve diagnostics in Alzheimer's disease (AD).
Methods: We enhance large-scale whole-brain simulation in TVB with a cause-and-effect model linking local amyloid beta (Aβ) positron emission tomography (PET) with altered excitability. We use PET and magnetic resonance imaging (MRI) data from 33 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI3) combined with frequency compositions of TVB-simulated local field potentials (LFP) for ML classification.
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete.
View Article and Find Full Text PDFRepetitive head impacts represent a risk factor for neurological impairment in team-sport athletes. In the absence of symptoms, a physiological basis for acute injury has not been elucidated. A basic brain function that is disrupted after mild traumatic brain injury is the regulation of homeostasis, instantiated by activity across a specific set of brain regions that comprise a central autonomic network.
View Article and Find Full Text PDFGenetic influences that govern the spatial patterning of the human cortex and its structural variability are still incompletely known. We analyzed structural MR images in twins, siblings, and pairs of unrelated subjects. A comprehensive set of methods was employed to quantify properties of cortical features at different spatial scales.
View Article and Find Full Text PDFWhile the prevalence of neurodegenerative diseases associated with dementia such as Alzheimer's disease (AD) increases, our knowledge on the underlying mechanisms, outcome predictors, or therapeutic targets is limited. In this work, we demonstrate how computational multi-scale brain modeling links phenomena of different scales and therefore identifies potential disease mechanisms leading the way to improved diagnostics and treatment. The Virtual Brain (TVB; thevirtualbrain.
View Article and Find Full Text PDFThis study aimed at uncovering mechanisms that govern the spatio-temporal patterning of the human cortex and its structural variability, and drawing links between fetal brain development and variability in adult brains. A data-driven analytic approach based on structural MR images revealed the following findings: (1) The cortical surface can be subdivided into 13 independent regions ("communities") based on macroscopic features. (2) Thirty centers of low inter-subject variability were found in major sulci on the cortical surface.
View Article and Find Full Text PDFAdolescence is a complex period of concurrent mental and physical development that facilitates adult functioning at multiple levels. Despite the growing number of neuroimaging studies of cognitive development in adolescence focusing on regional activation patterns, there remains a paucity of information about the functional interactions across these participating regions that are critical for cognitive functioning, including memory. The current study used structural equation modeling (SEM) to determine how interactions among brain regions critical for memory change over the course of adolescence.
View Article and Find Full Text PDFBackground & New Method: The widely used framework of voxel-based morphometry for analyzing neuroimages is extended here to model longitudinal imaging data by exchanging the linear model with a linear mixed-effects model. The new approach is employed for analyzing a large longitudinal sample of 756 diffusion-weighted images acquired in 177 subjects of the Alzheimer's Disease Neuroimaging initiative (ADNI).
Results And Comparison With Existing Methods: While sample- and group-level results from both approaches are equivalent, the mixed-effect model yields information at the single subject level.
Modern systems neuroscience increasingly leans on large-scale multi-lab neuroinformatics initiatives to provide necessary capacity for biologically realistic modeling of primate whole-brain activity. Here, we present a framework to assemble primate brain's biologically plausible anatomical backbone for such modeling initiatives. In this framework, structural connectivity is determined by adding complementary information from invasive macaque axonal tract tracing and non-invasive human diffusion tensor imaging.
View Article and Find Full Text PDFMemory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity.
View Article and Find Full Text PDFPurpose Of Review: An exciting advance in the field of neuroimaging is the acquisition and processing of very large data sets (so called 'big data'), permitting large-scale inferences that foster a greater understanding of brain function in health and disease. Yet what we are clearly lacking are quantitative integrative tools to translate this understanding to the individual level to lay the basis for personalized medicine.
Recent Findings: Here we address this challenge through a review on how the relatively new field of neuroinformatics modeling has the capacity to track brain network function at different levels of inquiry, from microscopic to macroscopic and from the localized to the distributed.
We have seen important strides in our understanding of mechanisms underlying stroke recovery, yet effective translational links between basic and applied sciences, as well as from big data to individualized therapies, are needed to truly develop a cure for stroke. We present such an approach using The Virtual Brain (TVB), a neuroinformatics platform that uses empirical neuroimaging data to create dynamic models of an individual's human brain; specifically, we simulate fMRI signals by modeling parameters associated with brain dynamics after stroke. In 20 individuals with stroke and 11 controls, we obtained rest fMRI, T1w, and diffusion tensor imaging (DTI) data.
View Article and Find Full Text PDFEEG has been used to study acute stroke for decades; however, because of several limitations EEG-based measures rarely inform clinical decision-making in this setting. Recent advances in EEG hardware, recording electrodes, and EEG software could overcome these limitations. The present study examined how well dense-array (256 electrodes) EEG, acquired with a saline-lead net and analyzed with whole brain partial least squares (PLS) modeling, captured extent of acute stroke behavioral deficits and varied in relation to acute brain injury.
View Article and Find Full Text PDFThe Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging.
View Article and Find Full Text PDFThere currently remains considerable variability in stroke survivor recovery. To address this, developing individualized treatment has become an important goal in stroke treatment. As a first step, it is necessary to determine brain dynamics associated with stroke and recovery.
View Article and Find Full Text PDFChildren who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization.
View Article and Find Full Text PDFJ Neuropsychiatry Clin Neurosci
December 2015
This study examined the efficacy of antidepressant treatment for preventing the onset of generalized anxiety disorder (GAD) among patients with recent stroke. Of 799 patients assessed, 176 were randomized, and 149 patients without evidence of GAD at the initial visit were included in this double-blind treatment with escitalopram (N=47) or placebo (N=49) or non-blinded problem-solving therapy (PST; 12 total sessions; N=53). Participants given placebo over 12 months were 4.
View Article and Find Full Text PDFFollowing stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment--from the time of the ictus itself to living with the consequences--must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage.
View Article and Find Full Text PDFAm J Geriatr Psychiatry
September 2013
Objective: Apathy occurs frequently following stroke and prior studies have demonstrated the negative effect of apathy on recovery from stroke. This study was a secondary analysis examining the efficacy of escitalopram, problem-solving therapy (PST), or placebo administered for 1 year to prevent the onset of apathy among patients with recent stroke.
Methods: Patients within 3 months of an index stroke who did not meet DSM-IV diagnostic criteria for major or minor depression and who did not have a serious comorbid physical illness were enrolled.