Publications by authors named "Ana Sofia Rodrigues"

Trauma scientists have raised the alarm about the devastating consequences of the Ukraine war on mental health. We examined how higher education students-as indirect victims-coped with this conflict and how they emotionally reacted during 2022. We involved 2314 students from 16 countries through an online survey.

View Article and Find Full Text PDF

Cytomegalovirus (CMV), a member of the family, typically causes asymptomatic infections or mild mononucleosis-like syndromes in immunocompetent individuals. However, severe manifestations are well-documented in immunocompromised populations. This case report presents a previously healthy seven-year-old girl with a rare and complex presentation of primary CMV infection leading to severe multiorgan involvement, hepatosplenomegaly, cholestasis, bicytopenia, and a prolonged disease course.

View Article and Find Full Text PDF

Geographic location and, particularly, soil and climate exert influence on the typicality of a wine from a specific region, which is often justified by the , and these factors also influence the epiphytic flora associated with the surface of the grape berries. In the present study, the microbiome associated with the surface of berries obtained from ten vineyards of the variety located in different geographical locations in mainland Portugal was determined and analyzed. The removal of microbial flora from the surface of the berries was carried out by washing and sonication, after which the extraction and purification of the respective DNA was carried out.

View Article and Find Full Text PDF

At least 50% of chronic disease patients don't follow their care plans, leading to lower health outcomes and higher medical costs. Providing Patient Education Materials (PEMs) to individuals living with a disease can help to overcome these problems. PEMs are especially beneficial for people suffering from multisystemic and underrecognized diseases, such as rare diseases.

View Article and Find Full Text PDF

Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism.

View Article and Find Full Text PDF

Perovskites of the (La,Ba)(Fe,Ti)O family were prepared, characterized, and utilized as heterogeneous photocatalysts, activated by natural sunlight, for environmental remediation of Acid Orange 7 (AO7) aqueous solutions. Catalysts were prepared by the ceramic (CM) and the complex polymerization (CP) methods and characterized by XRD, SEM, EDS, and band gap energy. It was found that catalytic properties depend on the synthesis method and annealing conditions.

View Article and Find Full Text PDF

Complex wastewater matrices present a major environmental concern. Besides the biodegradable organics, they may contain a great variety of toxic chemicals, heavy metals, and other xenobiotics. The electrochemically activated persulfate process, an efficient way to generate sulfate radicals, has been widely applied to the degradation of such complex effluents with very good results.

View Article and Find Full Text PDF

This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism . The influence of applied current density and type and concentration of added iron source, Fe(SO)·5HO or FeCl·6HO, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards .

View Article and Find Full Text PDF

Perovskite oxides BaFeTiO, with y = 0, 0.6, 0.8 and 1, were prepared by ceramic (CM) and complex polymerization methods (CPM) and utilized in UV-LED (365 nm) photocatalytic degradation assays of 25 mg L diclofenac (DIC) model solutions.

View Article and Find Full Text PDF

DMSO is a commonly used solvent in biological studies, as it is an amphipathic molecule soluble in both aqueous and organic media. For that reason, it is the vehicle of choice for several water-insoluble substances used in research. At the molecular and cellular level, DMSO is a hydrogen-bound disrupter, an intercellular electrical uncoupler, and a cryoprotectant, among other properties.

View Article and Find Full Text PDF

Embryonic diapause is a conserved reproductive strategy in which development arrests at the blastocyst phase. Recently mammalian target of rapamycin (mTOR) inhibition was shown to induce diapause on mouse blastocysts and a paused-like state on mouse embryonic stem cells (mESCs). In this work, we aimed to further characterize this new paused-pluripotent state, focusing on its glycolytic and oxidative metabolic function.

View Article and Find Full Text PDF

Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise.

View Article and Find Full Text PDF

Mesoporous silica nanoparticles (MSNs) feature ideal structural properties and surface chemistry for use as nanocarriers of molecules, polymers and biomolecules in cutting-edge applications. One important challenge remaining in their preparation is the ability to tune their diameter in the range of a few tens of nanometers, with narrow size dispersity, preferably using a simple, sustainable and scalable synthetic process. This work presents a fully controllable low-temperature and purely aqueous sol-gel method to prepare MSNs with user-defined diameters from 15 nm to 80 nm and narrow size dispersity.

View Article and Find Full Text PDF

In this study, the efficiency of electrochemical oxidation to treat a sanitary landfill leachate was evaluated by the reduction in physico-chemical parameters and in ecotoxicity. The acute toxicity of the sanitary landfill leachates, before and after treatment, was assessed with the model organism Daphnia magna. Electrochemical oxidation treatment was effective in the removal of organic load and ammonium nitrogen and in the reduction of metal ions concentrations.

View Article and Find Full Text PDF

Background: Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency.

View Article and Find Full Text PDF

Introduction: The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation.

View Article and Find Full Text PDF

Mitochondria are responsible for coordinating cellular energy production in the vast majority of somatic cells, and every cell type in a specific state can have a distinct metabolic signature. The metabolic requirements of cells from different tissues changes as they proliferate/differentiate, and cellular metabolism must match these demands. Proliferating cells, namely cancer cells and stem cells, tend to prefer glycolysis rather than a more oxidative metabolism.

View Article and Find Full Text PDF

Background: Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes.

Methods: A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers.

Results: Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation.

View Article and Find Full Text PDF

The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial proton leak contributes to about 20% of oxygen consumption and plays a role in basal metabolism, specifically in testicular mitochondria compared to kidney and liver mitochondria.
  • - The study found that proton leak is stimulated by linoleic acid and inhibited by guanosine diphosphate (GDP), with its levels correlating with uncoupling protein 2 (UCP2) across the different tissues.
  • - Modulating proton leak affects reactive oxygen species (ROS) production and lipid peroxidation in a tissue-specific manner, suggesting it could be a potential strategy to manage oxidative stress and improve male reproductive health.
View Article and Find Full Text PDF

A high-performance liquid chromatography-UV methodology (lambda=230 nm) was developed and validated for the simultaneous determination of vincristine and doxorubicin in pharmaceutical preparations used in oncology. The chromatography was carried out on a C18 column using acetonitrile 90% in water-potassium hydrogenphosphate buffer 50 mM, pH 3.2+/-0.

View Article and Find Full Text PDF

To address the possibility that mitochondria are involved in the age-related loss of testicular function, we characterized mitochondrial bioenergetics in rat testis. A peak of mitochondrial functionality was detected in adult animals, with a decrease in both young and older animals. In the latter group a decrease in mitochondrial function was matched with an increase in proton leak and expression and activity of uncoupling protein 2 (UCP2), suggesting that proton leak may be involved in managing age-dependent mitochondrial dysfunction.

View Article and Find Full Text PDF

The goal of this work was to correlate oxidative stress caused by reactive oxygen species (ROS) and DNA damage with classic semen parameters in spermatozoa and seminal plasma of fertile and subfertile stallions. Oxidation was measured in both lipids and proteins, using the thiobarbituric acid reactive species (TBARS) assay and the DNPH carbonyl groups assay, respectively. Sperm DNA damage was monitored using the TUNEL assay.

View Article and Find Full Text PDF