The CRISPR/Cas9 system has transformed genome editing by enabling precise modifications for diverse applications. Recent advancements, including base editing and prime editing, have expanded its utility beyond conventional gene knock-out and knock-in strategies. Additionally, several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains have been developed to modulate endogenous gene expression when directed to their regulatory regions by specific single-guide RNAs.
View Article and Find Full Text PDFEinstein (Sao Paulo)
May 2024
Objective: To report the need for cord untethering after prenatal repair of open spina bifida using a unique biocellulose-based technique performed at a later gestational age.
Methods: An observational cohort study was conducted to determine the incidence of tethered cord syndrome. Between May 2013 and May 2022, we performed 172 procedures using the percutaneous fetoscopic approach in fetuses at 26-28 weeks of gestation.
Photodynamic therapy (PDT) is a two-stage treatment that implies the use of light energy, oxygen, and light-activated compounds (photosensitizers) to elicit cancerous and precancerous cell death after light activation (phototoxicity). The biophysical, bioengineering aspects and its combinations with other strategies are highlighted in this review, both conceptually and as they are currently applied clinically. We further explore the recent advancements of PDT with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors as well as the combination of PDT with radiotherapy and immunotherapy as future promising cancer treatments.
View Article and Find Full Text PDFBackground: The high recurrence of glioblastoma (GB) that occurs adjacent to the resection cavity within two years of diagnosis urges an improvement of therapies oriented to GB local control. Photodynamic therapy (PDT) has been proposed to cleanse infiltrating tumor cells from parenchyma to ameliorate short long-term progression-free survival. We examined 5-aminolevulinic acid (5-ALA)-mediated PDT effects as therapeutical treatment and determined optimal conditions for PDT efficacy without causing phototoxic injury to the normal brain tissue.
View Article and Find Full Text PDFThe limited availability of red cells with extremely rare blood group phenotypes is one of the global challenges in transfusion medicine that has prompted the search for alternative self-renewable pluripotent cell sources for the in vitro generation of red cells with rare blood group types. One such phenotype is the Rh , which lacks all the Rh antigens on the red cell membrane and represents one of the rarest blood types in the world with only a few active blood donors available worldwide. Rh red cells are critical for the transfusion of immunized patients carrying the same phenotype, besides its utility in the diagnosis of Rh alloimmunization when a high-prevalence Rh specificity is suspected in a patient or a pregnant woman.
View Article and Find Full Text PDFIPSC-based disease modelling and pluripotency studies have sparked widespread enthusiasm for more than 16 years of research [...
View Article and Find Full Text PDFCharacterization of pluripotent states, in which cells can both self-renew or differentiate, with the irreversible loss of pluripotency, are important research areas in developmental biology. Although microRNAs (miRNAs) have been shown to play a relevant role in cellular differentiation, the role of miRNAs integrated into gene regulatory networks and its dynamic changes during these early stages of embryonic stem cell (ESC) differentiation remain elusive. Here we describe the dynamic transcriptional regulatory circuitry of stem cells that incorporate protein-coding and miRNA genes based on miRNA array expression and quantitative sequencing of short transcripts upon the downregulation of the Estrogen Related Receptor Beta (Esrrb).
View Article and Find Full Text PDFCell fate decisions during development are governed by multi-factorial regulatory mechanisms including chromatin remodeling, DNA methylation, binding of transcription factors to specific loci, RNA transcription and protein synthesis. However, the mechanisms by which such regulatory "dimensions" coordinate cell fate decisions are currently poorly understood. Here we quantified the multi-dimensional molecular changes that occur in mouse embryonic stem cells (mESCs) upon depletion of Estrogen related receptor beta (Esrrb), a key pluripotency regulator.
View Article and Find Full Text PDFThis article examines the medical and political discussions regarding a controversial medicinal bark from Ecuador - cundurango - that was actively sponsored by the Ecuadorian government as a new botanical cure for cancer in the late nineteenth century United States and elsewhere. The article focuses on the commercial and diplomatic interests behind the public discussion and advertising techniques of this drug. It argues that diverse elements - including the struggle for positioning scientific societies and the disapproval of the capacities of Ecuadorian doctors, US abolitionist history, regional and local political struggles - played a role in the quackery accusations against cundurango and its promoters.
View Article and Find Full Text PDFThe realization of the full potential of human pluripotent stem cells (hPSCs), including human induced PSCs (iPSC), relies on the ability to precisely edit their genome in a locus-specific and multiplex manner. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) serve as a guide for the endonuclease Cas9 (CRISPR-associated protein 9) to recognize and cleave specific strands of DNA that are complementary to the CRISPR sequence. CRISPR/Cas9-mediated editing has become the gold standard for precise genome manipulation as it offers a unique, versatile, and limitless tool for fast, robust, and efficient genome editing.
View Article and Find Full Text PDFRegadenoson Stress Echocardiography (RSE) can detect myocardial ischemia, and its diagnostic accuracy should be evaluated. We sought to investigate the agreement between RSE and gated-SPECT myocardial perfusion imaging (MPI) and appraise its diagnostic accuracy. Consecutive patients (n = 202) referred for non-invasive evaluation of myocardial ischemia, with (38.
View Article and Find Full Text PDFNeuroinflammation constitutes a fundamental cellular process to signal the loss of brain homeostasis. Glial cells play a central role in orchestrating these neuroinflammation processes in both deleterious and beneficial ways. These cellular responses depend on their intercellular interactions with neurons, astrocytes, the blood-brain barrier (BBB), and infiltrated T cells in the central nervous system (CNS).
View Article and Find Full Text PDFZika virus (ZIKV) infection results in an increased risk of spontaneous abortion and poor intrauterine growth although the underlying mechanisms remain undetermined. Little is known about the impact of ZIKV infection during the earliest stages of pregnancy, at pre- and peri-implantation, because most current ZIKV pregnancy studies have focused on post-implantation stages. Here, we demonstrate that trophectoderm cells of pre-implantation human and mouse embryos can be infected with ZIKV, and propagate virus causing neural progenitor cell death.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
March 2019
The recent advent of high-throughput sequencing technologies coupled with RNA modifications detection methods has allowed the detection of RNA modifications at single nucleotide resolution giving a more comprehensive landscape of post-transcriptional gene regulation pathways. In this review, we focus on the occurrence of 5-methylcytosine (mC) in the transcriptome. We summarise the main findings of the molecular role in post-transcriptional regulation that governs mC deposition in RNAs.
View Article and Find Full Text PDFThe human embryonic stem cell line NYSCFe002-A was derived from a day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe002-A line expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro.
View Article and Find Full Text PDFThe human embryonic stem cell line NYSCFe001-A was derived from a day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe001-A line, registered as NYSCF100 on the NIH registry, presents normal karyotype, is mycoplasma free, expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro.
View Article and Find Full Text PDFThe human embryonic stem cell line NYSCFe003-A was derived from a day 5 to day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe003-A line expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are being generated using various reprogramming methods and from different cell sources. Hence, a lot of effort has been devoted to evaluating the differences among iPSC lines, in particular with respect to their differentiation capacity. While line-to-line variability should mainly reflect the genetic diversity within the human population, here we review some studies that have brought attention to additional variation caused by genomic and epigenomic alterations.
View Article and Find Full Text PDFSomatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention.
View Article and Find Full Text PDFA 30-node signed and directed network responsible for self-renewal and pluripotency of mouse embryonic stem cells (mESCs) was extracted from several ChIP-Seq and knockdown followed by expression prior studies. The underlying regulatory logic among network components was then learned using the initial network topology and single cell gene expression measurements from mESCs cultured in serum/LIF or serum-free 2i/LIF conditions. Comparing the learned network regulatory logic derived from cells cultured in serum/LIF vs.
View Article and Find Full Text PDFDevelopmental gradients of morphogens and the formation of boundaries guide the choices between self-renewal and differentiation in stem cells. Still, surprisingly little is known about gene expression signatures of differentiating stem cells at the boundaries between regions. We thus combined inducible gene expression with a microfluidic technology to pattern gene expression in murine embryonic stem cells.
View Article and Find Full Text PDFThe histone H2A variant H2AZ is an essential chromatin signaling factor. Herein, we report that H2AZ is monomethylated at lysine 7 (H2AZK7me1) by the lysine methyltransferase SETD6. We observed that methylation of H2AZ increased noticeably upon cellular differentiation of mouse embryonic stem cells (mESCs).
View Article and Find Full Text PDFA number of key regulators of mouse embryonic stem (ES) cell identity, including the transcription factor Nanog, show strong expression fluctuations at the single-cell level. The molecular basis for these fluctuations is unknown. Here we used a genetic complementation strategy to investigate expression changes during transient periods of Nanog downregulation.
View Article and Find Full Text PDF