Publications by authors named "Ana Santos Coquillat"

Therapeutic cells are usually administered as living agents, despite the risks of undesired cell migration and acquisition of unpredictable phenotypes. Additionally, most cell-based therapies rely on the administration of single cells, often associated with rapid in vivo clearance. 3D cellular materials may be useful to prolong the effect of cellular therapies and offer the possibility of creating structural volumetric constructs.

View Article and Find Full Text PDF

The stimulation of mesenchymal stromal cells (MSCs) with inflammatory molecules is often used to boost their therapeutic effect. Prolonged exposure to inflammatory molecules has been explored to improve their action because MSCs therapies seem to be improved transiently with such stimuli. However, the possibility of cyclically stimulating MSCs to recover their optimized therapeutic potential is still to be elucidated, although the efficacy of cell-based therapies may be dependent on the ability to readapt to the relapse pathological conditions.

View Article and Find Full Text PDF

Curcumin is a natural molecule widely tested in preclinical and clinical studies due to its antioxidant and anti-inflammatory activity. Nevertheless, its high hydrophobicity and low bioavailability limit in vivo applications. To overcome curcumin´s drawbacks, small extracellular vesicles (sEVs) have emerged as potential drug delivery systems due to their non-immunogenicity, nanometric size and amphiphilic composition.

View Article and Find Full Text PDF

Despite decades of work, small-cell lung cancer (SCLC) remains a frustratingly recalcitrant disease. Both diagnosis and treatment are challenges: low-dose computed tomography (the approved method used for lung cancer screening) is unable to reliably detect early SCLC, and the malignancy's 5 year survival rate stands at a paltry 7%. Clearly, the development of novel diagnostic and therapeutic tools for SCLC is an urgent, unmet need.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEVs) are emerging natural nanoplatforms in cancer diagnosis and therapy, through the incorporation of signal components or drugs in their structure. However, for their translation into the clinical field, there is still a lack of tools that enable a deeper understanding of their in vivo pharmacokinetics or their interactions with the cells of the tumor microenvironment. In this study, we have designed a dual-sEV probe based on radioactive and fluorescent labeling of goat milk sEVs.

View Article and Find Full Text PDF

Exosomes are cell-derived nanovesicles with a proven intercellular signaling role in inflammation processes and immune response. Due to their natural origin and liposome-like structure, these nanometer-scale vesicles have emerged as novel platforms for therapy and diagnosis. In this work, goat milk exosomes are isolated and fully characterized in terms of their physicochemical properties, proteomics, and biochemical profile in healthy mice, and used to detect inflammatory processes by optical imaging.

View Article and Find Full Text PDF

The vertiginous increase in the use of extracellular vesicles and especially exosomes for therapeutic applications highlights the necessity of advanced techniques for gaining a deeper knowledge of their pharmacological properties. Herein, we report a novel chemical approach for the robust attachment of commercial fluorescent dyes to the exosome surface with covalent binding. The applicability of the methodology was tested on milk and cancer cell-derived exosomes (from U87 and B16F10 cancer cells).

View Article and Find Full Text PDF

Magnesium-based implants present several advantages for clinical applications, in particular due to their biocompatibility and degradability. However, degradation products can affect negatively the cell activity. In this work, a combined coating strategy to control the implant degradation and cell regulation processes is evaluated, including plasma electrolytic oxidation (PEO) that produces a 13 µm-thick Ca, P, and Si containing ceramic coating with surface porosity, and breath figures (BF) approach that produces a porous polymeric poly(ε-caprolactone) surface.

View Article and Find Full Text PDF

In this work, hydrogels based on HEMA and DMAEMA (pH-sensitive monomer) were used to form biocompatible films which present microwrinkled patterns in their surface, with the focus of exploring the role of chemical composition on cell adhesion and proliferation. Three different pH (5.4, 7.

View Article and Find Full Text PDF

We report a straightforward procedure to simultaneously functionalize hydrophobic PC supports with vinylpyrrolidone (VP)-based hydrogels with both variable ionic load as well as surface topography, forming wrinkles. The strategy involves three consecutive steps: first, a contact of the polymeric support (PC) with a photopolymerizable solution comprising vinylic monomers is established. Second, UV-light exposure curing of the solution and finally, the third step involes the swelling of the hydrogel network that finally provokes its surface detachment.

View Article and Find Full Text PDF

We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity.

View Article and Find Full Text PDF

We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells.

View Article and Find Full Text PDF

In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process.

View Article and Find Full Text PDF

We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed.

View Article and Find Full Text PDF