Publications by authors named "Ana Sanchez-Iglesias"

Optical matter, a transient arrangement formed by the interaction of light with micro/nanoscale objects, provides responsive and highly tunable materials that allow for controlling and manipulating light and/or matter. A combined experimental and theoretical exploration of optical matter is essential to advance our understanding of the phenomenon and potentially design applications. Most studies have focused on nanoparticles composed of a single material (either metallic or dielectric), representing two extreme regimes, one where the gradient force (dielectric) and one where the scattering force (metallic) dominates.

View Article and Find Full Text PDF

Gold bipyramids (AuBPs), despite having superior properties compared to their spectroscopically similar counterparts, gold nanorods, have found comparatively limited applications. This discrepancy is primarily due to the lack of protocols to tailor their dimensions. Typically, the concentration of Au seeds is virtually the sole factor that determines the aspect ratio and thus, the optical properties of AuBPs.

View Article and Find Full Text PDF

Strong coupling between a single quantum emitter and an optical cavity (at rate Ω) accesses fundamental quantum optics and provides an essential building block for photonic quantum technologies. However, the minimum mode volume of conventional dielectric cavities restricts their operation to cryogenic temperature for strong coupling. Here we harness surface self-assembly to make deterministic strong coupling at room temperature using CdSe/CdS quantum dots (QDs) in nanoparticle-on-mirror (NPoM) plasmonic nanocavities.

View Article and Find Full Text PDF

Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization.

View Article and Find Full Text PDF
Article Synopsis
  • Living systems often react periodically to irregular energy inputs, which is a key characteristic.
  • A new nanoparticle system is explored that responds hierarchically to light, using effects from heat and reversible DNA bonding to create oscillating water flows.
  • This system includes positive feedback from the slow gathering of gold nanoparticles and negative feedback from rapid disassembly, along with time delays, to produce an oscillating response.
View Article and Find Full Text PDF

The interactions between gold nanoparticles, their surface ligands and the solvent critically influence the properties of these nanoparticles. Although spectroscopic and scattering techniques have been used to investigate their ensemble structure, a comprehensive understanding of these processes at the nanoscale remains challenging. Electron microscopy makes it possible to characterize the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and the requirement for ultrahigh-vacuum conditions, which prevent the investigation of dynamic aspects.

View Article and Find Full Text PDF

Unraveling the nuanced interplay between the morphology and the optical properties of plasmonic nanoparticles is crucial for targeted applications. Managing the relationship becomes significantly complex when dealing with anisotropic nanoparticles that defy a simple description using parameters like length, width, or aspect ratio. This complexity requires computationally intensive numerical modeling and advanced imaging techniques.

View Article and Find Full Text PDF

Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability.

View Article and Find Full Text PDF

Unlabelled: Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal resolution tracking with real-time closed-loop feedback. To that end,  photoacoustic imaging has appeared as a promising technique for imaging microrobots in deep tissue with higher molecular specificity and contrast.

View Article and Find Full Text PDF

In principle, designing and synthesizing almost any class of colloidal crystal is possible. Nonetheless, the deliberate and rational formation of colloidal quasicrystals has been difficult to achieve. Here we describe the assembly of colloidal quasicrystals by exploiting the geometry of nanoscale decahedra and the programmable bonding characteristics of DNA immobilized on their facets.

View Article and Find Full Text PDF

Temperature-modulated colloidal phase of plasmonic nanoparticles is a convenient playground for resettable soft-actuators or colorimetric sensors. To render reversible clustering under temperature change, bulky ligands are required, especially if anisotropic morphologies are of interest. This study showcases thermoresponsive gold nanorods by employing small surface ligands, bis (p-sulfonatophenyl) phenyl-phosphine dihydrate dipotassium salt (BSPP) and native cationic surfactant.

View Article and Find Full Text PDF

Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe monolayers through resonant excitation of a dark exciton at room temperature. The optical near-fields of the plasmonic cavities excite the out-of-plane transition dipole of the dark exciton, leading to light emission from the bright exciton at higher energy.

View Article and Find Full Text PDF

Multidimensional particle properties determine the product properties in numerous advanced applications. Accurate and statistically meaningful measurements of complex particles and their multidimensional distributions are highly challenging but strongly needed. 2D particle size distributions of plasmonic nanoparticles of complex regular shape can be obtained from analytical ultracentrifugation experiments via the optical back coupling method.

View Article and Find Full Text PDF

Bottom-up assembly of nanoparticle-on-mirror (NPoM) nanocavities enables precise inter-metal gap control down to ≈ 0.4 nm for confining light to sub-nanometer scales, thereby opening opportunities for developing innovative nanophotonic devices. However limited understanding, prediction, and optimization of light coupling and the difficulty of controlling nanoparticle facet shapes restricts the use of such building blocks.

View Article and Find Full Text PDF

The mechanical properties and stability of metal nanoparticle colloids under high-pressure conditions are investigated by means of optical extinction spectroscopy and small-angle X-ray scattering (SAXS), for colloidal dispersions of gold nanorods and gold nanospheres. SAXS allows us to follow in situ the structural evolution of the nanoparticles induced by pressure, regarding both nanoparticle size and shape (form factor) and their aggregation through the interparticle correlation function () (structure factor). The observed behavior changes under hydrostatic and nonhydrostatic conditions are discussed in terms of liquid solidification processes yielding nanoparticle aggregation.

View Article and Find Full Text PDF

Introduction: A great challenge in nanomedicine, and more specifically in theranostics, is to improve the specificity, selectivity, and targeting of nanomaterials towards target tissues or cells. The topical use of nanomedicines as adjuvants to systemic chemotherapy can significantly improve the survival of patients affected by localized carcinomas, reducing the side effects of traditional drugs and preventing local recurrences.

Methods: Here, we have used the Shiga toxin, to design a safe, high-affinity protein-ligand (ShTxB) to bind the globotriaosylceramide receptor (GB3) that is overexpressed on the surfaces of preneoplastic and malignant cancer cells in the head and neck tumors.

View Article and Find Full Text PDF

A new methodology is presented to count the number of atoms in multimetallic nanocrystals by combining energy dispersive X-ray spectroscopy (EDX) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). For this purpose, the existence of a linear relationship between the incoherent HAADF STEM and EDX images is exploited. Next to the number of atoms for each element in the atomic columns, the method also allows quantification of the error in the obtained number of atoms, which is of importance given the noisy nature of the acquired EDX signals.

View Article and Find Full Text PDF

Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Hypothesis: Following blood administration, the pristine surface of nanoparticles (NPs) associates with biomolecules from the surrounding environment forming the so-called "biomolecular corona". It is well accepted that the biomolecular corona dramatically affects the NP fate in the biological medium while the pristine surface is no longer available for binding. Recent studies have shown that the glycans associated with the proteins forming the corona have a role in the NP interaction with macrophages, but the glycan identities remain unknown.

View Article and Find Full Text PDF

Large-scale visualization of nanoparticle kinetics is essential for optimizing drug delivery and characterizing toxicity associated with engineered nanomaterials. Real-time tracking of nanoparticulate agents across multiple murine organs is hindered with the currently available whole-body preclinical imaging systems due to limitations in contrast, sensitivity, spatial, or temporal resolution. Herein, we demonstrate rapid volumetric tracking of gold nanoagent kinetics and biodistribution in mice at a suborgan level with single-sweep volumetric optoacoustic tomography (sSVOT).

View Article and Find Full Text PDF

The synthesis of gold nanorods requires the presence of symmetry-breaking and shape-directing additives, among which bromide ions and quaternary ammonium surfactants have been reported as essential. As a result, hexadecyltrimethylammonium bromide (CTAB) has been selected as the most efficient surfactant to direct anisotropic growth. One of the difficulties arising from this selection is the low solubility of CTAB in water at room temperature, and therefore the seeded growth of gold nanorods is usually performed at 25 °C or above, which has restricted so far the analysis of kinetic effects derived from lower temperatures.

View Article and Find Full Text PDF

The density and compressibility of nanoscale gold (both nanospheres and nanorods) and microscale gold (bulk) were simultaneously studied by X-ray diffraction with synchrotron radiation up to 30 GPa. Colloidal stability (aggregation state and nanoparticle shape and size) in both hydrostatic and nonhydrostatic regions was monitored by small-angle X-ray scattering. We demonstrate that nonhydrostatic effects due to solvent solidification had a negligible influence on the stability of the nanoparticles.

View Article and Find Full Text PDF

The incidence and mortality of cancer demand more innovative approaches and combination therapies to increase treatment efficacy and decrease off-target side effects. We describe a boron-rich nanoparticle composite with potential applications in both boron neutron capture therapy (BNCT) and photothermal therapy (PTT). Our strategy is based on gold nanorods (AuNRs) stabilized with polyethylene glycol and functionalized with the water-soluble complex cobalt (dicarbollide) ([3,3'-Co(1,2-CBH)]), commonly known as COSAN.

View Article and Find Full Text PDF

In a typical colloidal synthesis, the molecules of the reducing agent are irreversibly oxidized during nanocrystal growth. Such a scenario is of questionable sustainability when confronted with naturally occurring processes in which reducing agent molecules are cyclically regenerated. Here we show that cofactor molecules once consumed in the nucleation and growth of metallic nanocrystals can be photoregenerated using metallic nanocrystals as photocatalysts and reused in the subsequent nucleation process.

View Article and Find Full Text PDF

Environmental conditions during real-world application of bimetallic core-shell nanoparticles (NPs) often include the use of elevated temperatures, which are known to cause elemental redistribution, in turn significantly altering the properties of these nanomaterials. Therefore, a thorough understanding of such processes is of great importance. The recently developed combination of fast electron tomography with in situ heating holders is a powerful approach to investigate heat-induced processes at the single NP level, with high spatial resolution in 3D.

View Article and Find Full Text PDF