Publications by authors named "Ana S Valles"

In Brief: The endocrine disruptor, nonylphenol (NP) increases 20:4n-6 release in Sertoli cells via PKA/cPLA2 activation. Our data show that lipid metabolism could be a target of NP-induced abnormal reproductive outcomes.

Abstract: Nonylphenol (NP), an endocrine-disrupting chemical, is an environmental contaminant, and many notorious effects on male fertility have been reported in animal models and wild-type species.

View Article and Find Full Text PDF

Metabolic syndrome (MetS), marked by enduring metabolic inflammation, has detrimental effects on cognitive performance and brain structure, influencing behavior. This study aimed to investigate whether maternal MetS could negatively impact the neurodevelopment and metabolism of offspring. To test this hypothesis, 2 months old female Wistar rats were subjected to a 10-week regimen of tap water alone or supplemented with 20% fructose to induce MetS.

View Article and Find Full Text PDF

The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy.

View Article and Find Full Text PDF

Fructose is a common sweetener found in the daily diet supplemented to many processed and ultra-processed foods and beverages. Consumption of fructose-sweetened beverages has drastically increased in the last decades and is widely associated with metabolic disease, systemic pro-inflammatory status, and adverse transgenerational effects. To date, the impact of maternal fructose intake in brain function of the offspring is less explored.

View Article and Find Full Text PDF

Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate.

View Article and Find Full Text PDF

Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters.

View Article and Find Full Text PDF

Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations.

View Article and Find Full Text PDF

Compartmentalization of the membrane is essential for cells to perform highly specific tasks and spatially constrained biochemical functions in topographically defined areas. These membrane lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains. Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from minutes to days.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved.

View Article and Find Full Text PDF

Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids.

View Article and Find Full Text PDF

Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia among older persons. Pathognomonic hallmarks of the disease include the development of amyloid senile plaques and deposits of neurofibrillary tangles. These changes occur in the brain long before the clinical manifestations of AD (cognitive impairment in particular) become apparent.

View Article and Find Full Text PDF

Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage.

View Article and Find Full Text PDF

Free fatty acids (FFAs) are non-competitive antagonists of the nicotinic acetylcholine receptor (AChR). Their site of action is supposedly located at the lipid-AChR interface. To elucidate the mechanism involved in this antagonism, we studied the effect that FFAs with a single double-bond at different positions (ω6, ω9, ω11 and ω13 cis-18:1) have on different AChR properties.

View Article and Find Full Text PDF

The α7 subtype of nicotinic acetylcholine receptors (AChRs) is one of the most abundant members of the Cys-loop family of receptors present in the central nervous system. It participates in various physiological processes and has received much attention as a potential therapeutic target for a variety of pathologies. The importance of understanding the mechanisms controlling AChR assembly and cell-surface delivery lies in the fact that these two processes are key to determining the functional pool of receptors actively engaged in synaptic transmission.

View Article and Find Full Text PDF

Aim: Studies of the alpha7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of alpha7-type AChRs(1). The current work aims at obtaining and characterizing a cell line with high functional expression of the human alpha7 AChR.

View Article and Find Full Text PDF

The anticonvulsive drug Lamotrigine (LTG) is found to activate adult muscle nicotinic acetylcholine receptors (AChR). Single-channel patch-clamp recordings showed that LTG (0.05-400 microM) applied alone is able to open AChR channels.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) contribute significantly to hippocampal function. Alpha7-nAChRs are present in presynaptic sites in hippocampal neurons and may influence transmitter release, but the factors that determine their presynaptic localization are unknown. We report here that Wnt-7a, a ligand active in the canonical Wnt signaling pathway, induces dissociation of the adenomatous polyposis coli (APC) protein from the beta-catenin cytoplasmic complex and the interaction of APC with alpha7-nAChRs in hippocampal neurons.

View Article and Find Full Text PDF

Lamotrigine is an antiepileptic drug employed in the treatment of partial epilepsies. We studied its possible interaction with channels other than its known therapeutic target, the voltage-gated sodium channel, using the adult muscle nicotinic acetylcholine receptor as a model system. At the single-channel level, lamotrigine caused a dose-dependent (a) diminution in mean open time, (b) increase in mean burst duration and (c) increase in the area of a new closed-time component.

View Article and Find Full Text PDF