Publications by authors named "Ana S Leal"

Article Synopsis
  • The tumor microenvironment (TME) in pancreatic cancer makes up about 90% of the tumor mass, influenced by factors like pancreatitis, which enhances macrophage infiltration and increases cancer risk.
  • The transcription factor NRF2 plays a crucial role in regulating oxidative stress responses and inflammation in macrophages, impacting cancer progression and drug resistance.
  • Using bromodomain inhibitors like I-BET-762 in treatment can decrease HO-1 levels in macrophages, suggesting a potential strategy to inhibit inflammation-related tumor growth in pancreatic cancer.
View Article and Find Full Text PDF

Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized.

View Article and Find Full Text PDF

The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex.

View Article and Find Full Text PDF

Retinoid X receptor (RXR) agonists, which activate the RXR nuclear receptor, are effective in multiple preclinical cancer models for both treatment and prevention. While RXR is the direct target of these compounds, the downstream changes in gene expression differ between compounds. RNA sequencing was used to elucidate the effects of the novel RXRα agonist MSU-42011 on the transcriptome in mammary tumors of HER2+ mouse mammary tumor virus (MMTV)-Neu mice.

View Article and Find Full Text PDF

The NRF2/KEAP1 pathway protects healthy cells from malignant transformation and maintains cellular homeostasis. Up to 30% of human lung tumors gain constitutive NRF2 activity which contributes to cancer cell survival and chemoresistance, but the effects of NRF2 activation in immune cells within the tumor microenvironment are underexplored. Macrophages can promote cancer progression or regression depending on context, and NRF2 activation affects macrophage activity.

View Article and Find Full Text PDF

Rexinoids are ligands which activate retinoid X receptors (RXRs), regulating transcription of genes involved in cancer-relevant processes. Rexinoids have anti-neoplastic activity in multiple preclinical studies. Bexarotene, used to treat cutaneous T cell lymphoma, is the only FDA-approved rexinoid.

View Article and Find Full Text PDF

(1) Background: Notwithstanding numerous therapeutic advances, 176,000 deaths from breast and lung cancers will occur in the United States in 2021 alone. The tumor microenvironment and its modulation by drugs have gained increasing attention and relevance, especially with the introduction of immunotherapy as a standard of care in clinical practice. Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and upon ligand binding, function as transcription factors to modulate multiple cell functions.

View Article and Find Full Text PDF

The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma.

View Article and Find Full Text PDF

In pancreatic cancer the tumor microenvironment (TME) can account for up to 90% of the tumor mass. The TME drives essential functions in disease progression, invasion and metastasis. Tumor cells can use epigenetic modulation to evade immune recognition and shape the TME toward an immunosuppressive phenotype.

View Article and Find Full Text PDF

Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia.

View Article and Find Full Text PDF

Despite numerous therapeutic advances in the past decade, breast cancer is expected to cause over 42,000 deaths in the United States in 2019. Breast cancer had been considered an immunologically silent tumor; however recent findings suggest that immune cells play important roles in tumor growth even in the breast. Retinoid X receptors (RXRs) are a subclass of nuclear receptors that act as ligand-dependent transcription factors that regulate a variety of cellular processes including proliferation and differentiation; in addition, they are essential for macrophage biology.

View Article and Find Full Text PDF

Two recently approved PARP inhibitors provide an important new therapeutic option for patients with BRCA-mutated metastatic breast cancer. PARP inhibitors significantly prolong progression-free survival in patients, but conventional oral delivery of PARP inhibitors is hindered by limited bioavailability and off-target toxicities, thus compromising the therapeutic benefits and quality of life for patients. Here, we developed a new delivery system, in which the PARP inhibitor Talazoparib is encapsulated in the bilayer of a nano-liposome, to overcome these limitations.

View Article and Find Full Text PDF

The stromal reaction in pancreatic cancer creates a physical barrier that blocks therapeutic intervention and creates an immunosuppressive tumor microenvironment. The Rho/myocardin-related transcription factor (MRTF) pathway is implicated in the hyper-activation of fibroblasts in fibrotic diseases and the activation of pancreatic stellate cells. In this study we use CCG-222740, a small molecule, designed as a Rho/MRTF pathway inhibitor.

View Article and Find Full Text PDF

Rexinoids, selective ligands for retinoid X receptors (RXR), have shown promise in preventing many types of cancer. However, the limited efficacy and undesirable lipidemic side-effects of the only clinically approved rexinoid, bexarotene, drive the search for new and better rexinoids. Here we report the evaluation of novel pyrimidinyl (Py) analogues of two known chemopreventive rexinoids, bexarotene (Bex) and LG100268 (LG268) in a new paradigm.

View Article and Find Full Text PDF

Low 5-year survival rates, increasing incidence, as well as the specific challenges of targeting pancreatic cancer, clearly support an urgent need for new multifunctional drugs for the prevention and treatment of this fatal disease. Natural products, such as abietane-type diterpenoids, are widely studied as promiscuous anticancer agents. In this study, dehydroabietic oximes were identified as potential compounds to target pancreatic cancer and cancer-related inflammation.

View Article and Find Full Text PDF

Chronic or repeated episodes of acute pancreatic inflammation, or pancreatitis, are risk factors for the development of pancreatic cancer. Pancreatic cancer is characterized by a strong fibro-inflammatory tumor microenvironment. In pancreatitis, the same fibro-inflammatory reaction is observed concurrently with a loss of normal pancreatic cells.

View Article and Find Full Text PDF

Breast cancer and lung cancer remain the top two leading causes of cancer-related deaths in women. Because of limited success in reducing the high mortality of these diseases, new drugs and approaches are desperately needed. Cancer prevention is one such promising strategy that is effective in both preclinical and clinical studies.

View Article and Find Full Text PDF

Almost half a million of all new cancers have been attributed to obesity and epidemiologic evidence implicates visceral adipose tissue (VAT) and high-fat diets (HFD) in increasing cancer risk. We demonstrated that VAT-derived fibroblast growth factor 2 (FGF2) from mice fed an HFD or obese individuals stimulates the malignant transformation of epithelial cells. Mechanism-based strategies to prevent this VAT-enhanced tumorigenesis have not been explored.

View Article and Find Full Text PDF

Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.

View Article and Find Full Text PDF

Natural pentacyclic triterpenoids (PTs) have been often reported to exhibit a wide range of biological activities. Among them, the anticancer and anti-inflammatory activities are the most studied. Over the last two decades, the number of publications reporting the anticancer effects of PTs has risen exponentially, reflecting the increasing interest in these natural products for the development of new antineoplastic drugs.

View Article and Find Full Text PDF

Bromodomain inhibitors (JQ1 and I-BET 762) are a new generation of selective, small molecule inhibitors that target BET (bromodomain and extra terminal) proteins. By impairing their ability to bind to acetylated lysines on histones, bromodomain inhibitors interfere with transcriptional initiation and elongation. BET proteins regulate several genes responsible for cell cycle, apoptosis and inflammation.

View Article and Find Full Text PDF

Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-Kras;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer.

View Article and Find Full Text PDF

A series of new oleanane imidazole carbamates, N-acylimidazoles or N-alkylimidazoles were synthesized, characterized and evaluated for their antiproliferative activity in AsPC-1 pancreatic cancer cells. Structure-activity relationship analysis revealed that the N-alkylimidazole 27 was the most active compound with apoptosis induction abilities correlated with upregulation of NOXA and downregulation of Bcl-xL. The antiproliferative activity of compound 27 was further tested in more solid tumor cell lines with IC(50) values lower than 1 μM.

View Article and Find Full Text PDF

This review highlights the potential of natural and semisynthetic ursane-type triterpenoids as candidates for the design of multi-target bioactive compounds, with focus on their anticancer effects. A brief illustration of the biosynthesis, sources, and general biological effects of the main classes of naturally occurring pentacyclic triterpenoids (PTs) are provided.

View Article and Find Full Text PDF