Publications by authors named "Ana Rojo"

Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE).

View Article and Find Full Text PDF

Better knowledge of the molecular actors governing sequential amyloid precursor protein (APP) proteolysis is crucial to endorse novel therapies aimed to delay Alzheimer's disease (AD) progression. ADAM17 (A Disintegrin and Metalloproteinase 17) is a type-I transmembrane protease involved in the non-amyloidogenic processing of APP that contributes to the maintenance of synaptic functions. In this work, we analyzed the 5'-flanking region and first intron of ADAM17 gene employing an in silico analysis.

View Article and Find Full Text PDF

This research evaluates from a usability point of view the combination of a developed fully immersive virtual reality (VR) solution with the SWalker robotic device. It aims to contribute to research in the exploration of immersive experiences overground with a functional gait recovery device. We evaluated the system in a pilot study with 20 healthy participants aged 85.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease that compromises liver function, for which there is not a specifically approved medicine. Recent research has identified transcription factor NRF2 as a potential therapeutic target. However, current NRF2 activators, designed to inhibit its repressor KEAP1, exhibit unwanted side effects.

View Article and Find Full Text PDF

Background: New interventions based on motor learning principles and neural plasticity have been tested among patients with ataxia and hemiparesis. Therapies of pedaling exercises have also shown their potential to induce improvements in muscle activity, strength, and balance. Virtual reality (VR) has been demonstrated as an effective tool for improving the adherence to physical therapy, but it is still undetermined if it promotes greater improvements than conventional therapy.

View Article and Find Full Text PDF
Article Synopsis
  • * A systematic review and meta-analysis of 86 studies examined links between parental substance use and ADHD in children, focusing on prenatal and postnatal exposure to alcohol, tobacco, and other substances.
  • * Strong evidence indicated that prenatal exposure to alcohol or tobacco and parental substance use disorders significantly increase the risk of ADHD in children, suggesting that addressing parental substance use could help reduce ADHD cases.
View Article and Find Full Text PDF

Powered lower limb exoskeletons have been used in recent decades to support and improve conventional gait rehabilitation programs. In this context, visual feedback is considered a valuable tool to facilitate patient learning and engagement. Treadmill-based lower limb robotic exoskeletons are commonly incorporated with traditional screens or virtual reality (VR) devices.

View Article and Find Full Text PDF

Achieving adherence to physical exercise training is essential in elders and adults with neurological disorders. Immersive technologies are seeing wide adoption among new neurorehabilitation therapies, as they provide a highly effective motivational and stimulating component. The aim of this study is to verify whether the developed virtual reality system for pedaling exercise is accepted and could be safety, useful and motivating for these populations.

View Article and Find Full Text PDF

The hexanucleotide expansion of the gene is found in 40% of familial amyotrophic lateral sclerosis (ALS) patients. This genetic alteration has been connected with impaired management of reactive oxygen species. In this study, we conducted targeted transcriptional profiling in leukocytes from patients and control subjects by examining the mRNA levels of 84 redox-related genes.

View Article and Find Full Text PDF

Background: Neck pain, one of the most common musculoskeletal diseases, affects 222 million people worldwide. The cervical range of motion (CROM) is a tool used to assess the neck's state across three movement axes: flexo-extension, rotation, and lateral flexion. People with neck pain often have a reduced CROM, and they feel pain at the end-range and/or accompany neck movements with compensatory trunk movements.

View Article and Find Full Text PDF

It is widely accepted that activating the transcription factor NRF2 will blast the physiological anti-inflammatory mechanisms, which will help combat pathologic inflammation. Much effort is being put in inhibiting the main NRF2 repressor, KEAP1, with either electrophilic small molecules or disrupters of the KEAP1/NRF2 interaction. However, targeting β-TrCP, the non-canonical repressor of NRF2, has not been considered yet.

View Article and Find Full Text PDF

Our modern society suffers from both pervasive sleep loss and substance abuse-what may be the indications for sleep on substance use disorders (SUDs), and could sleep contribute to the individual variations in SUDs? Decades of research in sleep as well as in motivated behaviors have laid the foundation for us to begin to answer these questions. This review is intended to critically summarize the circuit, cellular, and molecular mechanisms by which sleep influences reward function, and to reveal critical challenges for future studies. The review also suggests that improving sleep quality may serve as complementary therapeutics for treating SUDs, and that formulating sleep metrics may be useful for predicting individual susceptibility to SUDs and other reward-associated psychiatric diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) affects the central nervous system and has detectable changes in blood, suggesting potential biomarkers for better diagnosis and treatment monitoring.
  • A targeted study compared blood samples from 38 mild AD patients to 38 matched controls, focusing on inflammation and redox gene expression, revealing 48 inflammation and 34 redox genes that were differently expressed.
  • The results indicate that certain inflammation and redox genes could serve as biomarkers for monitoring anti-inflammatory therapies in mild AD, with key regulatory factors like NFκB and NRF2 significantly disturbed in these patients' blood.
View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus.

View Article and Find Full Text PDF

Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from , the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2).

View Article and Find Full Text PDF

Transcription factor NRF2 orchestrates a cellular defense against oxidative stress and, so far, has been involved in tumor progression by providing a metabolic adaptation to tumorigenic demands and resistance to chemotherapeutics. In this study, we discover that NRF2 also propels tumorigenesis in gliomas and glioblastomas by inducing the expression of the transcriptional co-activator TAZ, a protein of the Hippo signaling pathway that promotes tumor growth. The expression of the genes encoding NRF2 (NFE2L2) and TAZ (WWTR1) showed a positive correlation in 721 gliomas from The Cancer Genome Atlas database.

View Article and Find Full Text PDF

The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) and its principal negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the maintenance of redox, metabolic and protein homeostasis, as well as the regulation of inflammation. Thus, NRF2 activation provides cytoprotection against numerous pathologies including chronic diseases of the lung and liver; autoimmune, neurodegenerative and metabolic disorders; and cancer initiation. One NRF2 activator has received clinical approval and several electrophilic modifiers of the cysteine-based sensor KEAP1 and inhibitors of its interaction with NRF2 are now in clinical development.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), the canonical Wnt inhibitor Dickkopf-1 (Dkk1) is induced by β-amyloid (Aβ) and shifts the balance from canonical towards non-canonical Wnt signalling. Canonical (Wnt-β-catenin) signalling promotes synapse stability, while non-canonical (Wnt-PCP) signalling favours synapse retraction; thus Aβ-driven synapse loss is mediated by Dkk1. Here we show that the Amyloid Precursor Protein (APP) co-activates both arms of Wnt signalling through physical interactions with Wnt co-receptors LRP6 and Vangl2, to bi-directionally modulate synapse stability.

View Article and Find Full Text PDF

Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO).

View Article and Find Full Text PDF

Unlabelled: Chaperone-mediated autophagy (CMA) is a selective degradative process for cytosolic proteins that contributes to the maintenance of proteostasis. The signaling mechanisms that control CMA are not fully understood but might involve response to stress conditions including oxidative stress. Considering the role of CMA in redoxtasis and proteostasis, we sought to determine if the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2) has an impact on CMA modulation.

View Article and Find Full Text PDF

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome).

View Article and Find Full Text PDF