Lipases have valuable potential for industrial use, particularly those mostly active against water-insoluble substrates, such as triglycerides composed of long-carbon chain fatty acids. However, in most cases, engineered variants often need to be constructed to achieve optimal performance for such substrates. Protein engineering techniques have been reported as strategies for improving lipase characteristics by introducing specific mutations in the cap domain of esterases or in the lid domain of lipases or through lid domain swapping.
View Article and Find Full Text PDFWhen bioprospecting for novel industrial enzymes, substrate promiscuity is a desirable property that increases the reusability of the enzyme. Among industrial enzymes, ester hydrolases have great relevance for which the demand has not ceased to increase. However, the search for new substrate promiscuous ester hydrolases is not trivial since the mechanism behind this property is greatly influenced by the active site's structural and physicochemical characteristics.
View Article and Find Full Text PDFBiotechnological solutions will be a key aspect in our immediate future society, where optimized enzymatic processes through enzyme engineering might be an important solution for waste transformation, clean energy production, biodegradable materials, and green chemistry, for example. Here we advocate the importance of structural-based bioinformatics and molecular modeling tools in such developments. We summarize our recent experiences indicating a great prediction/success ratio, and we suggest that an early phase should be performed in enzyme engineering studies.
View Article and Find Full Text PDF