Publications by authors named "Ana Repolles"

The controlled integration of magnetic molecules into superconducting circuits is key to developing hybrid quantum devices. Herein, we study [Dy2] molecular dimers deposited into micro-SQUID susceptometers. The results of magnetic, heat capacity and magnetic resonance experiments, backed by theoretical calculations, show that each [Dy2] dimer fulfills the main requisites to encode a two-spin quantum processor.

View Article and Find Full Text PDF

Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled.

View Article and Find Full Text PDF

A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions.

View Article and Find Full Text PDF

The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.

View Article and Find Full Text PDF

Direct measurements of the linear ac susceptibility and magnetic relaxation of a few Mn12 monolayers deposited on a μ-SQUID sensor are reported. In order to integrate the molecules into the device, DPN has been the technique of choice. It enabled the structuration of the molecules on the most sensitive areas of the sensor without the need for any previous functionalization of the molecule or the substrate, while controlling the number of molecular units deposited on each array.

View Article and Find Full Text PDF

A new ligand has been synthesized with the aim of favoring distinct coordination environments within lanthanide polynuclear complexes. It has led to the formation of three unsymmetrical [Ln(III)(2)] (Ln = Gd, Tb, Eu) complexes, exhibiting weak antiferromagnetic coupling and, for Eu and Tb, high single-ion magnetic anisotropy. All of these attributes are necessary for these clusters to behave as possible 2qubit quantum gates.

View Article and Find Full Text PDF