Publications by authors named "Ana Raquel Soares"

Acute aortic occlusion (AAO) is a rare and life-threatening condition, mostly secondary to acute thrombosis or embolism. It usually presents as bilateral lower limb ischemia; however, in rare cases, spinal cord infarction might coexist, mimicking cauda equina syndrome. We present a rare case of AAO by saddle embolism of a thoracic aortic mural thrombus.

View Article and Find Full Text PDF

The vaginal acidic environment potentiates the formation of biofilms, leading to complicated and recurrent infections. Importantly, the production of matrix is known to contribute to the recalcitrant features of biofilms. In this study, we reveal that Zap1 regulates the matrix of acidic biofilms and analyzed the modulation of their transcriptome (by microarrays) and matrix proteome (by LC-MS/MS) by Zap1.

View Article and Find Full Text PDF

Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection.

View Article and Find Full Text PDF

The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, was exposed to carbendazim (5 µg L) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a custom microarray).

View Article and Find Full Text PDF

Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.

View Article and Find Full Text PDF

Candida albicans is a common Candida species, responsible for infections in various anatomical sites under different environmental conditions, aggravated in the presence of its biofilms. As such, this study aimed to reveal the regulation of C. albicans biofilms under acidic conditions by the transcription factor Sfl1, whose role on biofilm formation is unclear.

View Article and Find Full Text PDF

Serine tRNAs (tRNA) are frequently overexpressed in tumors and associated with poor prognosis and increased risk of recurrence in breast cancer. Impairment of tRNA biogenesis and abundance also impacts proteome homeostasis, and activates protein quality control systems. Herein, we aimed at testing whether increasing tRNA abundance could foster tumor establishment through activation of the UPR.

View Article and Find Full Text PDF

Aging can be defined as the progressive deterioration of cellular, tissue, and organismal function over time. Alterations in protein homeostasis, also known as proteostasis, are a hallmark of aging that lead to proteome imbalances and protein aggregation, phenomena that also occur in age-related diseases. Among the various proteostasis regulators, microRNAs (miRNAs) have been reported to play important roles in the post-transcriptional control of genes involved in maintaining proteostasis during the lifespan in several organismal tissues.

View Article and Find Full Text PDF

Reversing protein aggregation within cells may be an important tool to fight protein-misfolding disorders such as Alzheimer's, Parkinson's, and cardiovascular diseases. Here we report the design and synthesis of a family of steroid-quinoline hybrid compounds based on the framework combination approach. This set of hybrid compounds effectively inhibited Aβ1-42 self-aggregation by delaying the exponential growth phase and/or reducing the quantity of fibrils in the steady state.

View Article and Find Full Text PDF

Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways.

View Article and Find Full Text PDF

Viruses rely on the host cell translation machinery for efficient synthesis of their own proteins. Emerging evidence highlights different roles for host transfer RNAs (tRNAs) in the process of virus replication. For instance, different RNA viruses manipulate host tRNA pools to favor viral protein translation.

View Article and Find Full Text PDF

In order to efficiently replicate, viruses require precise interactions with host components and often hijack the host cellular machinery for their own benefit. Several mechanisms involved in protein synthesis and processing are strongly affected and manipulated by viral infections. A better understanding of the interplay between viruses and their host-cell machinery will likely contribute to the development of novel antiviral strategies.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are key players of protein synthesis, as they decode the genetic information organized in mRNA codons, translating them into the code of 20 amino acids. To be fully active, tRNAs undergo extensive post-transcriptional modifications, catalyzed by different tRNA-modifying enzymes. Lack of these modifications increases the level of missense errors and affects codon decoding rate, contributing to protein aggregation with deleterious consequences to the cell.

View Article and Find Full Text PDF

Until recently, transfer RNAs (tRNAs) were thought to function in protein translation only. However, recent findings demonstrate that both pre- and mature tRNAs can undergo endonucleolytic cleavage by different ribonucleases originating different types of small non-coding RNAs, known as tRNA-derived fragments (tRFs). tRFs are classified according to their origin and are implicated in various cellular processes, namely apoptosis, protein synthesis control, and RNA interference.

View Article and Find Full Text PDF

Background: Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire.

Results: Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish.

View Article and Find Full Text PDF

Prenatal exposure to ethanol leads to a myriad of developmental disorders known as fetal alcohol spectrum disorder, often characterized by growth and mental retardation, central nervous system damage, and specific craniofacial dysmorphic features. The mechanisms of ethanol toxicity are not fully understood, but exposure during development affects the expression of several genes involved in cell cycle control, apoptosis, and transcriptional regulation. MicroRNAs (miRNAs) are implicated in some of these processes, however, it is not yet clear if they are involved in ethanol-induced toxicity.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of small RNAs (sRNAs) of approximately 22 nucleotides in length that control eukaryotic gene expression at the translational level. They regulate a wide variety of biological processes, namely developmental timing, cell differentiation, cell proliferation, the immune response, and infection. Their identification is essential to understand eukaryotic biology.

View Article and Find Full Text PDF