A subpopulation of astrocytes expressing WD Repeat Domain 49 (WDR49) was recently identified in frontotemporal lobar degeneration (FTLD) with GRN pathogenic variants. This is the first study to investigate their expression and relation to pathology in other FTLD subtypes and Alzheimer's disease (AD). In a postmortem cohort of TDP-43 proteinopathies (12 GRN, 11 C9orf72, 9 sporadic TDP-43), tauopathies (13 MAPT, 8 sporadic tau), 10 AD, and four controls, immunohistochemistry and immunofluorescence were performed for WDR49 and pathological inclusions on frontal, temporal, and occipital cortical sections.
View Article and Find Full Text PDFBackground: Frontotemporal lobar degeneration (FTLD) is one of the leading causes of early onset dementia. Pathogenic variants in GRN have been reported to cause 5-25% of familial and 5% of sporadic FTLD. Here, we present two novel, likely pathogenic variants in GRN.
View Article and Find Full Text PDFNeuroinflammation has been implicated in frontotemporal lobar degeneration (FTLD) pathophysiology, including in genetic forms with microtubule-associated protein tau (MAPT) mutations (FTLD-MAPT) or chromosome 9 open reading frame 72 (C9orf72) repeat expansions (FTLD-C9orf72). Iron accumulation as a marker of neuroinflammation has, however, been understudied in genetic FTLD to date. To investigate the occurrence of cortical iron accumulation in FTLD-MAPT and FTLD-C9orf72, iron histopathology was performed on the frontal and temporal cortex of 22 cases (11 FTLD-MAPT and 11 FTLD-C9orf72).
View Article and Find Full Text PDFPatients with mutated (-mt) metastatic melanoma benefit significantly from treatment with BRAF inhibitors. Currently, the status is determined on archival tumor tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether radiomics can predict the status in a non-invasive manner.
View Article and Find Full Text PDF