Identifying the drivers of adaptation is key to understanding the origin and evolution of diversity. Here we study the morphological evolution of tooth morphology, a classic example of a conserved structure, to gain insights into the conditions that can overcome resistance to evolutionary change. We use geometric morphometrics of the occlusal surface outline of the fourth lower premolar (p4) of squirrels, a paradigm of a stable tooth morphology, to explore morphological adaptations to diet.
View Article and Find Full Text PDFThe study of how long-term changes affect metacommunities is a relevant topic, that involves the evaluation of connections among biological assemblages across different spatio-temporal scales, in order to fully understand links between global changes and macroevolutionary patterns. We applied multivariate statistical analyses and diversity tests using a large data matrix of rodent fossil sites in order to analyse long-term faunal changes. Late Miocene rodent faunas from southwestern Europe were classified into metacommunities, presumably sharing ecological affinities, which followed temporal and environmental non-random assembly and disassembly patterns.
View Article and Find Full Text PDFWe developed new quantitative palaeoclimatic inference models based on the body-size structure of mammal faunas from the Old World tropics and applied them to the Somosaguas fossil site (middle Miocene, central Iberian Peninsula). Twenty-six mammal species have been described at this site, including proboscideans, ungulates, carnivores, insectivores, lagomorphs and rodents. Our analyses were based on multivariate and bivariate regression models correlating climatic data and body-size structure of 63 modern mammal assemblages from Sub-Saharan Africa and the Indian subcontinent.
View Article and Find Full Text PDFRodents are the most speciose group of mammals and display a great ecological diversity. Despite the greater amount of ecomorphological information compiled for extant rodent species, studies usually lack of morphological data on dentition, which has led to difficulty in directly utilizing existing ecomorphological data of extant rodents for paleoecological reconstruction because teeth are the most common or often the only micromammal fossils. Here, we infer the environmental ranges of extinct rodent genera by extracting habitat information from extant relatives and linking it to extinct taxa based on the phenogram of the cluster analysis, in which variables are derived from the principal component analysis on outline shape of the upper first molars.
View Article and Find Full Text PDFDeep-time perspectives in macroecology are essential with regard to understanding the impact of climate forcing on faunal communities. Using late Miocene rodent faunas (12 to 5 Ma) from two different biogeographical provinces from southwestern Europe, we asked whether the waxing and waning of faunas with dissimilar ecological affinities tracked climate in different ways. The latest middle Miocene featured a fauna dominated by dormice with forest and mixed-habitat affinities.
View Article and Find Full Text PDFMurine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline.
View Article and Find Full Text PDFBackground: Several macroevolutionary hypotheses propose a synchrony between climatic changes and variations in the structure of faunal communities. Some of them focus on the importance of the species ecological specialization because of its effects on evolutionary processes and the resultant patterns. Particularly, Vrba's turnover pulse hypothesis and resource-use hypothesis revolve around the importance of biome inhabitation.
View Article and Find Full Text PDF