Titanium plates are the current gold standard for fracture fixation of the mandible. Magnesium alloys such as WE43 are suitable biodegradable alternatives due to their high biocompatibility and elasticity modulus close to those of cortical bone. By surface modification, the reagibility of magnesium and thus hydrogen gas accumulation per time are further reduced, bringing plate fixation with magnesium closer to clinical application.
View Article and Find Full Text PDFMagnesium as a biodegradable material offers promising results in recent studies of different maxillo-facial fracture models. To overcome adverse effects caused by the fast corrosion of pure magnesium in fluid surroundings, various alloys, and surface modifications are tested in animal models. In specified cases, magnesium screws already appeared for clinical use in maxillofacial surgery.
View Article and Find Full Text PDFBackground: Mechanical and morphological factors have both been described to influence the rate of pseudarthrosis in mandibular reconstruction. By minimizing mechanical confounders, the present study aims to evaluate the impact of bone origin at the intersegmental gap on osseous union.
Methods: Patients were screened retrospectively for undergoing multi-segment fibula free flap reconstruction of the mandible including the anterior part of the mandible and osteosynthesis using patient-specific 3D-printed titanium reconstruction plates.
Background: The challenges in developing new bone replacement materials and procedures reside not solely in technological innovation and advancement, but also in a broader patient therapy acceptance. Therefore, there is a need to assess patients' perspectives on the materials and approaches in use as well as the ones being developed to better steer future progress in the field.
Methods: A self-initiating cross-sectional questionnaire aimed at people seeking treatment at the university hospital environment of Charité Berlin was formulated.
The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps.
View Article and Find Full Text PDFBackground: Patient-specific 3D-printed miniplates for free flap fixation in mandibular reconstruction were recently associated with enhanced osseous union. Higher mechanical strains resulting from these plates are discussed as reasons, but biomechanical studies are missing. This study aims to examine, whether patient-specific 3D-printed miniplates provide an increased interosteotomy movement (IOM) and lower stiffness compared with reconstruction plates.
View Article and Find Full Text PDFBioabsorbable magnesium implants for orthopedic fixation of bone have recently become available for different fields of indication. While general questions of biocompatibility have been answered, tailoring suitable degradation kinetics for specific applications as well as long-term tissue integration remain the focus of current research. The aim of this study was the evaluation of the long-term degradation behavior and osseointegration of Mg-Ca-Zn (ZX00MEO) based magnesium implants with plasma-electrolytic oxidation (PEO) surface modification (ZX00MEO-PEO) in comparison to non-surface modified implants in vivo and in vitro.
View Article and Find Full Text PDFObjectives: To investigate the effect of different pre-treatments on the long-term bond strength of fiberglass posts luted either with dual-curing self-etch adhesives and core build-up composites or with a self-adhesive resin (SAR) cement.
Materials And Methods: In total, 180 human root-filled teeth received post-space preparations and three different dentin pre-treatments (PTs): PT1, ethanol (99%); PT2, ethanol-tertiary-butanol-water-solution (AH Plus Cleaner, Dentsply Sirona; York, USA); and PT3, distilled water (control). Five luting systems were used: FU, Futurabond U (Voco; Cuxhaven, Germany); CL, Clearfil DC Bond (Kuraray Noritake; Okayama, Japan); GR, Gradia Core SE Bond (GC Europe NV; Leuven, Belgium); LU, LuxaBond Universal (DMG; Hamburg, Germany); and RX, RelyX Unicem 2 (3M; Minnesota, USA).
Objectives: The aim of this study was to assess the fatigue loading behavior and fracture resistance of endodontically treated teeth restored with adhesively luted bundled fiber posts in comparison to solid fiber posts. Image analysis (2D and 3D) was applied to evaluate modes of failure and to characterize susceptible parts of the post-and-core interface.
Method: Crowns of 72 human similar-sized central upper incisors were removed and roots received a conventional root canal filling prior to establishing 4 groups of core build-up: No Post group (nP) received a 4 mm deep filling made of composite inside the canal with no dental post, fiber post group (FP) received a conventional solid post, and two experimental groups received bundles of 6 (FB6) or 12 (FB12) 0.
Bonding of resin composite fillings, for example following root-canal treatment, is a challenge because remaining gaps grow and lead to failure. Here, phase-contrast-enhanced micro-computed tomography (PCE-CT) is used to explore methods of non-destructive quantification of the problem, so that countermeasures can be devised. Five human central incisors with damaged crowns were root-filled followed by restoration with a dental post.
View Article and Find Full Text PDFObjectives: There is concern that the integrity of fiberglass dental posts may be affected by chairside trimming during treatment. We hypothesize that hard X-ray methods of phase contrast-enhanced micro-CT (PCE-CT) and synchrotron based X-ray refraction (SXRR) can reliably identify and help characterize the extent of damage.
Methods: Fiberglass posts were imaged both as manufactured and following trimming with a diamond bur.
Multiple myeloma (MM) bone disease is characterized by osteolytic bone tissue destruction resulting in bone pain, fractures, vertebral collapse, and spinal cord compression in patients. Upon initial diagnosis of MM, almost 80% of patients suffer from bone disease. Earlier diagnosis and intervention in MM bone disease would potentially improve treatment outcome and patient survival.
View Article and Find Full Text PDFObjective: To reevaluate proven strengths and weakness of glass ionomer cements (GICs) and to identify agreement versus conflicting evidence in previous reports regarding the transition between GIC and the tooth, and the existence of an "interphase".
Materials And Methods: Relevant electronic databases (PubMed, Embase via Ovid and Medline via Web of science) were searched for publications of evidence relating to the transition zone at the GIC-tooth interphase. Studies were examined and grouped according to characteristics of GIC-tooth attachment area quantified by X-ray and optical microscopy techniques in 2D and 3D.
Purpose: The aim of the present study was to measure the bond strength of adhesively luted glass-fiber bundles inside the root canal with respect to the application procedure in comparison to conventional solid glass-fiber posts.
Materials And Methods: 104 human anterior teeth were endodontically treated, root filled and divided into 8 groups (n = 13). After post space preparation, fiber bundles consisting of 6 and 12 glass fibers, respectively, were luted adhesively with a multi-mode adhesive (Futurabond U; Voco, Cuxhaven, Germany) and a dual-curing composite (Rebilda DC, Voco) with the following application modes into the root canal: (1) direct application with tweezers, (2) distribution of the fibers using a spreader, (3) application of ultrasound after insertion of fibers.
Background: Type 1 diabetes mellitus (T1DM) largely affects children, occurring therefore at the same period of deciduous and permanent teeth development. The aim of this work was to investigate birefringence and morphology of the secretory stage enamel organic extracellular matrix (EOECM), and structural and mechanical features of mature enamel from T1DM rats.
Methods: Adult Wistar rats were maintained alive for a period of 56 days after the induction of experimental T1DM with a single dose of streptozotocin (60 mg/kg).
Environ Toxicol Pharmacol
March 2016
Bisphosphonates (BPs) avidly bind to calcium crystals and inhibit osteoclastic bone resorption, making them useful for treatment of skeletal disorders such as osteoporosis, Paget's disease, osteogenesis imperfecta and metastatic bone diseases. BPs therapeutically act by causing toxic effects on osteoclasts or interfering with specific intracellular pathways in those cells. BPs that possess nitrogen in their composition are called nitrogen-containing BPs (NBPs) and include alendronate, pamidronate, risedronate, ibandronate, and zoledronate.
View Article and Find Full Text PDFThe modulation of collagen fibers during experimental skin wound healing was studied in 112 Wistar rats submitted to laser photobiomodulation treatment. A standardized 8mm-diameter wound was made on the dorsal skin of all animals. In half of them, 0.
View Article and Find Full Text PDFThis article compares the results of two surveys in Salvador, Bahia State, Brazil, on prevalence and severity of dental fluorosis in 12 and 15-year-olds. The article discusses the survey methodologies in relation to their sampling process, calibration of examiners, and data collection procedures, comparing the resulting differences using chi-square and 95% confidence intervals obtained with the Dean index. A total of 3,313 adolescents 12 and 15 years of age were analyzed in 2001 and 1,032 in 2004.
View Article and Find Full Text PDF