Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable values in traditional field-effect transistors (FETs), revealing it to be a promising technique for exploring the electronic phases of materials in extreme doping regimes. Due to their chemical stability, transition metal dichalcogenides (TMDs) are ideal candidates to produce ionic-liquid-gated FETs. Furthermore, as recently discovered, ILG can be used to obtain the band gap of two-dimensional semiconductors directly from the simple transfer characteristics.
View Article and Find Full Text PDFStrongyloides stercoralis is a parasitic nematode with a worldwide distribution. It can go from an asymptomatic infection to a life-threatening hyperinfection syndrome. Here, we report a case of intestinal obstruction due to S.
View Article and Find Full Text PDFThe peculiar features of domain walls observed in ferroelectrics make them promising active elements for next-generation non-volatile memories, logic gates and energy-harvesting devices. Although extensive research activity has been devoted recently to making full use of this technological potential, concrete realizations of working nanodevices exploiting these functional properties are yet to be demonstrated. Here, we fabricate a multiferroic tunnel junction based on ferromagnetic LaSrMnO electrodes separated by an ultrathin ferroelectric BaTiO tunnel barrier, where a head-to-head domain wall is constrained.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer.
View Article and Find Full Text PDF