Recent data indicate that IGF1R/IRS signaling is a potential therapeutic target in BCR-ABL1-negative myeloproliferative neoplasms (MPN); in this pathway, IRS2 is involved in the malignant transformation induced by JAK2, and upregulation of IGF1R signaling induces the MPN phenotype. NT157, a synthetic compound designed as an IGF1R-IRS1/2 inhibitor, has been shown to induce antineoplastic effects in solid tumors. Herein, we aimed to characterize the molecular and cellular effects of NT157 in JAK2-positive MPN cell lines (HEL and SET2) and primary patient hematopoietic cells.
View Article and Find Full Text PDFThe IGF1R/IRS1 signaling is activated in acute lymphoblastic leukemia (ALL) and can be targeted by the pharmacological inhibitors NT157 (IGF1R-IRS1/2 inhibitor) and OSI-906 (IGF1R/IR inhibitor). Here we investigate the cellular and molecular effects of NT157 and OSI-906 in ALL cells. NT157 and OSI-906 treatment reduced viability, proliferation and cell cycle progression in ALL cell lines.
View Article and Find Full Text PDFThe insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models.
View Article and Find Full Text PDFThe recurrent gain-of-function JAK2 mutation confers growth factor-independent proliferation for hematopoietic cells and is a major contributor to the pathogenesis of myeloproliferative neoplasms (MPN). The lack of complete response in most patients treated with the JAK1/2 inhibitor ruxolitinib indicates the need for identifying novel therapeutic strategies. Metformin is a biguanide that exerts selective antineoplastic activity in hematological malignancies.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by abnormal proliferation and accumulation of lymphoblasts in the hematopoietic system. Stathmin 1 is a proliferation marker for normal lymphocytes, which has been described as highly expressed in ALL patients and functionally important for leukemia phenotype. In the present study, we expand our previous observations and aim to investigate expression and its impact on laboratory features and clinical outcomes in an independent cohort of ALL patients, and to verify the effects of paclitaxel treatment on Stathmin 1 phosphorylation and cell viability in ALL cell lines.
View Article and Find Full Text PDFInsulin-like growth factor 1 (IGF1) and its receptor IGF1R regulate normal cell growth and contribute to cell transformation through activation of downstream signaling pathways. In fibroblast cells, insulin receptor substrate 1 (IRS1), through IGF1 signaling, was found to be the key protein for nuclear translocation of β-catenin and MYC transcription activation. We herein investigated the IRS1/β-catenin axis in acute lymphoblastic leukemia (ALL) cells.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm of the hematopoietic stem cell characterized by presence of the oncoprotein BCR-ABL1, which have constitutive tyrosine kinase activity. BCR-ABL1 activation induces aurora kinase A (AURKA) and aurora kinase B (AURKB) expression, which are serine-threonine kinases that play an important function in chromosome alignment, segregation and cytokinesis during mitosis. Acquisition of resistance to tyrosine kinase inhibitors has emerged as a problem for CML patients and the identification of novel targets with an important contribution for CML phenotype is of interest.
View Article and Find Full Text PDFMed Oncol
May 2014
We compared the levels of AURKA and AURKB in 24 (mantle cell lymphoma) MCL patients harboring 8q abnormalities and its relationship with MYCC gene status. Two distinct subgroups were observed, in terms of MYCC expression. Except for the patients with Burkitt's-like translocation, none of the patients harboring 8q abnormalities, including balanced translocations or duplications of MYCC band, identified both by G-banding and SKY, showed differential expression levels of MYCC.
View Article and Find Full Text PDF