The aviation industry's growing interest in renewable jet fuel has encouraged the exploration of alternative oilseed crops. Replacing traditional fossil fuels with a sustainable, domestically sourced crop can substantially reduce carbon emissions, thus mitigating global climate instability. Pennycress (Thlaspi arvense L.
View Article and Find Full Text PDFLipid droplets (LDs) are unusual organelles that have a phospholipid monolayer surface and a hydrophobic matrix. In oilseeds, this matrix is nearly always composed of triacylglycerols (TGs) for efficient storage of carbon and energy. Various proteins play a role in their assembly, stability and turnover, and even though the major structural oleosin proteins in seed LDs have been known for decades, the factors influencing LD formation and dynamics are still being uncovered mostly in the "model oilseed" Arabidopsis.
View Article and Find Full Text PDFThrough current mass spectrometry methods and multiple RNA-Seq technologies, large metabolomics and transcriptomics datasets are readily obtainable, which provide a powerful and global perspective on metabolism. Indeed, one "omics" method is often not enough to draw strong conclusions about metabolism. Combining and interpreting multiple "omics" datasets remains a challenging task that requires careful statistical considerations and pre-planning.
View Article and Find Full Text PDFInduction of high photosynthetic capacity is a key acclimation response to high light (HL) for many herbaceous dicot plants; however, the signaling pathways that control this response remain largely unknown. Here, a systems biology approach was utilized to characterize the induction of high photosynthetic capacity in strongly and weakly acclimating Arabidopsis thaliana accessions. Plants were grown for 5 wk in a low light (LL) regime, and time-resolved photosynthetic physiological, metabolomic, and transcriptomic responses were measured during subsequent exposure to HL.
View Article and Find Full Text PDFPhysaria fendleri is a member of the Brassicaceae that produces in its embryos hydroxy fatty acids, constituents of oils that are very valuable and widely used by industry for cosmetics, lubricants, biofuels, etc. Free of toxins and rich in hydroxy fatty acids, Physaria provides a promising alternative to imported castor oil and is on the verge of being commercialized. This study aims to identify important biochemical step(s) for oil synthesis in Physaria, which may serve as target(s) for future crop improvement.
View Article and Find Full Text PDFPennycress (Thlaspi arvense L.), a member of the Brassicaceae family, produces seed oil high in erucic acid, suitable for biodiesel and aviation fuel. Although pennycress, a winter annual, could be grown as a dedicated bioenergy crop, an increase in its seed oil content is required to improve its economic competitiveness.
View Article and Find Full Text PDFFront Plant Sci
January 2023
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest.
View Article and Find Full Text PDFIntroduction: Products of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family is extremely diverse and abundant in Central America and contains several economically important genera, e.g.
View Article and Find Full Text PDFPennycress is a potentially lucrative biofuel crop due to its high content of long-chain unsaturated fatty acids, and because it uses non-conventional pathways to achieve efficient oil production. However, metabolic engineering is required to improve pennycress oilseed content and make it an economically viable source of aviation fuel. Research is warranted to determine if further upregulation of these non-conventional pathways could improve oil production within the species even more, which would indicate these processes serve as promising metabolic engineering targets and could provide the improvement necessary for economic feasibility of this crop.
View Article and Find Full Text PDFPlant pathogens perturb their hosts to create environments suitable for their proliferation, including the suppression of immunity and promotion of water and nutrient availability. Although necrotrophs obtain water and nutrients by disrupting host-cell integrity, it is unknown whether hemibiotrophs, such as the bacterial pathogen Pantoea stewartii subsp. stewartii (Pnss), actively liberate water and nutrients during the early, biotrophic phase of infection.
View Article and Find Full Text PDFThe Brassicaceae family comprises more than 3,700 species with a diversity of phenotypic characteristics, including seed oil content and composition. Recently, the global interest in Thlaspi arvense L. (pennycress) has grown as the seed oil composition makes it a suitable source for biodiesel and aviation fuel production.
View Article and Find Full Text PDFSoybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered.
View Article and Find Full Text PDFSymbiotic nitrogen (N) fixation entails successful interaction between legume hosts and rhizobia that occur in specialized organs called nodules. N-fixing legumes have a higher demand for phosphorus (P) than legumes grown on mineral N. Medicago truncatula is an important model plant for characterization of effects of P deficiency at the molecular level.
View Article and Find Full Text PDFDuring its development, the leaf undergoes profound metabolic changes to ensure, among other things, its growth. The subcellular metabolome of tomato leaves was studied at four stages of leaf development, with a particular emphasis on the composition of the vacuole, a major actor of cell growth. For this, leaves were collected at different positions of the plant, corresponding to different developmental stages.
View Article and Find Full Text PDFRatoon stunt (RS) is a worldwide disease that reduces biomass up to 80% and is caused by the xylem-dwelling bacterium subsp. . This study identified discriminant metabolites between a resistant (R) and a susceptible (S) sugarcane variety at the early stages of pathogen colonization (30 and 120 days after inoculation-DAI) by untargeted and targeted metabolomics of leaves and xylem sap using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively.
View Article and Find Full Text PDFThe combination of C-isotopic labeling and mass spectrometry imaging (MSI) offers an approach to analyze metabolic flux in situ. However, combining isotopic labeling and MSI presents technical challenges ranging from sample preparation, label incorporation, data collection, and analysis. Isotopic labeling and MSI individually create large, complex data sets, and this is compounded when both methods are combined.
View Article and Find Full Text PDFIn legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N.
View Article and Find Full Text PDFPennycress (Thlaspi arvense L.) accumulates oil up to 35% of the total seed biomass, and its overall fatty acid composition is suitable for aviation fuel. However, for this plant to become economically viable, its oil production needs to be improved.
View Article and Find Full Text PDFEnhancing fatty acid synthesis (FAS) in maize () has tremendous potential nutritional and economic benefits due to the rapidly growing demand for vegetable oil. In maize kernels, the endosperm and the embryo are the main sites for synthesis and accumulation of starch and oil, respectively. So far, breeding efforts to achieve elevated oil content in maize have resulted in smaller endosperms and therefore lower yield.
View Article and Find Full Text PDFThe plant leaf apoplast is a dynamic environment subject to a variety of both internal and external stimuli. In addition to being a conduit for water vapor and gas exchange involved in transpiration and photosynthesis, the apoplast also accumulates many nutrients transported from the soil as well as those produced through photosynthesis. The internal leaf also provides a protective environment for endophytic and pathogenic microbes alike.
View Article and Find Full Text PDF