In this paper, the effect of femtosecond laser nanotexturing of surfaces of Ti6Al4V and Zr implants on their biological compatibility is presented and discussed. Highly regular and homogeneous nanostructures with sub-micrometer period were imprinted on implant surfaces. Surfaces were morphologically and chemically investigated by SEM and XPS.
View Article and Find Full Text PDFIn this work, cellulose films pre-activated with carbonyldiimidazole (CDI) and grafted with 1,6-hexanediamine, were decorated with silver nanoparticles (AgNPs). The generation of AgNPs was followed by quartz crystal microbalance (QCM). The obtained films were characterized by X-Ray Photoelectron Spectroscopy (XPS) and imaged by atomic force microscopy (AFM).
View Article and Find Full Text PDFMetallic silver nanoparticles were synthesized in aqueous solution using chitosan, as both reducing and stabilizing agent, and AgNO as silver precursor aiming the production of solid ultra-thin films. A systematic characterization of the resulting system as a function of the initial concentrations was performed. The combination of UV-vis absorption - and its quantitative analysis - with X-ray photoelectron spectra, light scattering measurements and atomic force microscopy allowed obtaining a rational picture of silver reduction mechanism through the identification of the nature of the formed reduced/oxidized species.
View Article and Find Full Text PDF