The overconsumption of highly caloric and palatable foods has caused a surge in obesity rates in the past half century, thereby posing a healthcare challenge due to the array of comorbidities linked to heightened body fat accrual. Developing treatments to manage body weight requires a grasp of the neurobiological basis of appetite. In this Review, we discuss advances in neuroscience that have identified brain regions and neural circuits that coordinate distinct phases of eating: food procurement, food consumption, and meal termination.
View Article and Find Full Text PDFOrganotypic slice cultures (OTCs) have been employed in the laboratory since the early 1980s and have proved to be useful for the study of a number of neural systems. Our recent work focuses on the development of behavioral stress resilience induced by repeated daily injections of neuropeptide Y into the basolateral amygdala (BLA). Resilience develops over weeks, persisting to 8 weeks.
View Article and Find Full Text PDFEndogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons.
View Article and Find Full Text PDFNeuropeptide Y (NPY) expression is tightly linked with the development of stress resilience in rodents and humans. Local NPY injections targeting the basolateral amygdala (BLA) produce long-term behavioral stress resilience in male rats via an unknown mechanism. Previously, we showed that activation of NPY Y receptors hyperpolarizes BLA principal neurons (PNs) through inhibition of the hyperpolarization-activated, depolarizing H-current, The present studies tested whether NPY treatment induces stress resilience by modulating NPY (10 pmol) was delivered daily for 5 d bilaterally into the BLA to induce resilience; thereafter, the electrophysiological properties of PNs and the expression of in the BLA were characterized.
View Article and Find Full Text PDF