Publications by authors named "Ana P R Torres"

Sugarcane vinasse is the main waste stream of the Brazilian agroindustry. The typical composition of sugarcane vinasse gives it a high polluting potential that implies the necessity to define sustainable strategies for managing this waste. Knowledge of the inorganic and organic composition of vinasse and its seasonal variation is extremely important to conduct scientific research to define alternative managements for vinasse disposal other than fertigation.

View Article and Find Full Text PDF
Article Synopsis
  • Oil refineries use a significant amount of water and produce a lot of wastewater, necessitating the recycling of water due to environmental regulations.
  • The study focuses on using reverse osmosis membranes to treat wastewater, highlighting their economic and environmental advantages, despite being susceptible to microbial contamination.
  • Researchers analyzed feedwater and membrane surfaces, identifying 37 bacterial isolates and 17 filamentous fungi, with key bacterial genera contributing to biofilm formation in membrane systems.
View Article and Find Full Text PDF

Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment.

View Article and Find Full Text PDF

Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation.

View Article and Find Full Text PDF

In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge.

View Article and Find Full Text PDF

Bacterial diversity of two distinct wastewater treatment systems, conventional activated sludge (CAS) and membrane bioreactor (MBR), of petroleum refineries were investigated through 16S rRNA gene libraries. Sequencing and phylogenetic analysis showed that the bacterial community composition of sludge samples was distinct between the two wastewater treatment systems. MBR clones belonged predominantly to Class Betaproteobacteria, represented mainly by genera Thiobacillus and Thauera, whereas CAS clones were mostly related to Class Alphaproteobacteria, represented by uncultured bacteria related to Order Parvularculales.

View Article and Find Full Text PDF

The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries.

View Article and Find Full Text PDF