Genes Dis
March 2025
Expression quantitative trait locus (eQTL) studies illuminate genomic variants that regulate specific genes and contribute to fine-mapped loci discovered via genome-wide association studies (GWAS). Efforts to maximize their accuracy are ongoing. Using 240 glomerular (GLOM) and 311 tubulointerstitial (TUBE) micro-dissected samples from human kidney biopsies, we discovered 5371 GLOM and 9787 TUBE genes with at least one variant significantly associated with expression (eGene) by incorporating kidney single-nucleus open chromatin data and transcription start site distance as an "integrative prior" for Bayesian statistical fine-mapping.
View Article and Find Full Text PDFPurpose: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made.
View Article and Find Full Text PDFIntroduction: Most of the approximately 60 genes that if mutated cause steroid-resistant nephrotic syndrome (SRNS) are highly expressed in the glomerular podocyte, rendering SRNS a "podocytopathy."
Methods: We performed whole-exome sequencing (WES) in 1200 nephrotic syndrome (NS) patients.
Results: We discovered homozygous truncating and homozygous missense mutation in (synaptopodin-2) (p.
Introduction: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of chronic kidney disease during childhood. Identification of 63 monogenic human genes has delineated 12 distinct pathogenic pathways.
Methods: Here, we generated 2 independent sets of nephrotic syndrome (NS) candidate genes to augment the discovery of additional monogenic causes based on whole-exome sequencing (WES) data from 1382 families with NS.
Background: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease.
View Article and Find Full Text PDFNephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) , but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation.
View Article and Find Full Text PDFFocal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8.
View Article and Find Full Text PDFThe discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections.
View Article and Find Full Text PDFBackground: An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in ∼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis.
Methods: In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD.
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT.
View Article and Find Full Text PDFBackground: Mutations in about 50 genes have been identified as monogenic causes of nephrotic syndrome, a frequent cause of CKD. These genes delineated the pathogenetic pathways and rendered significant insight into podocyte biology.
Methods: We used whole-exome sequencing to identify novel monogenic causes of steroid-resistant nephrotic syndrome (SRNS).