A method for optimizing an automatic selection of values for parameters that feed segmentation algorithms is proposed. Evolutionary optimization techniques in combination with a fitness function based on a mutual information parameter have been used to find the optimal parameter values of region growing, fuzzy c-means and graph cut segmentation algorithms. To validate the method, the segmentation of two transmission electron microscopy tomography reconstructed volumes of a carbon black-reinforced rubber and a polylactic acid and clay nanocomposite is carried out (i) using evolutionary optimization techniques and (ii) manually by experts.
View Article and Find Full Text PDFA method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined.
View Article and Find Full Text PDFThe SIRT (Simultaneous Iterative Reconstruction Technique) algorithm is commonly used in Electron Tomography to calculate the original volume of the sample from noisy images, but the results provided by this iterative procedure are strongly dependent on the specific implementation of the algorithm, as well as on the number of iterations employed for the reconstruction. In this work, a methodology for selecting the iteration number of the SIRT reconstruction that provides the most accurate segmentation is proposed. The methodology is based on the statistical analysis of the intensity profiles at the edge of the objects in the reconstructed volume.
View Article and Find Full Text PDF