Publications by authors named "Ana Moreno-Blanco"

Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a rare lysosomal disease caused by congenital enzymatic deficiencies in heparan sulfate (HS) degradation, leading to organ dysfunction. The most severe hallmark of MPS III comprises neurological alterations, although gastrointestinal symptoms (GISs) have also been shown to be relevant in many patients. Here, we explored the contribution of the gut microbiota to MPS III GISs.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have been proposed as the standard treatment for different stages of non-small-cell lung cancer in multiple indications. Not all patients benefit from these treatments, however, and certain patients develop immune-related adverse events. Although the search for predictors of response to these drugs is a major field of research, these issues have yet to be resolved.

View Article and Find Full Text PDF

When is exposed to changing environmental conditions, the expression of many genes is regulated at the transcriptional level. We reported previously that the enterococcal MafR protein causes genome-wide changes in the transcriptome. Here we show that MafR activates directly the transcription of the gene, which encodes a hypothetical protein of 111 amino acid residues.

View Article and Find Full Text PDF

Misuse and abuse of antibiotics on humans, cattle, and crops have led to the selection of multi-resistant pathogenic bacteria, the most feared 'superbugs'. Infections caused by superbugs are progressively difficult to treat, with a subsequent increase in lethality: the toll on human lives is predicted to reach 10 million by 2050. Here we review three concepts linked to the growing resistance to antibiotics, namely (i) the , which refers to the collection of bacterial genes that confer resistance to antibiotics, (ii) the , which includes all the mobile genetic elements that participate in the spreading of antibiotic resistance among bacteria by horizontal gene transfer processes, and (iii) the , which refers to the set of genes that are expressed when bacteria try to colonize new niches.

View Article and Find Full Text PDF

The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that shows high levels of genetic variability. The pneumococcal R6 genome harbours several gene clusters that are not present in all strains of the species. One of these clusters contains two divergent genes, pclA, which encodes a putative surface-exposed protein that contains large regions of collagen-like repeats, and spr1404 (here named pclR).

View Article and Find Full Text PDF

Proteins that act as global transcriptional regulators play key roles in bacterial adaptation to new niches. These proteins recognize multiple DNA sites across the bacterial genome by different mechanisms. Enterococcus faecalis is able to survive in various niches of the human host, either as a commensal or as a leading cause of serious infections.

View Article and Find Full Text PDF

Global transcriptional regulators play key roles during bacterial adaptation to environmental fluctuations. Protein MafR from Enterococcus faecalis was shown to activate the transcription of many genes on a genome-wide scale. We proposed that MafR is a global regulator of the Mga/AtxA family.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: