Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings.
View Article and Find Full Text PDFThe anaerobic gut microbial pathway that converts choline into trimethylamine (TMA) is broadly linked to human disease. Here, we describe the discovery that betaine aldehyde inhibits TMA production from choline by human gut bacterial isolates and a complex gut community. In vitro assays and a crystal structure suggest betaine aldehyde targets the gut microbial enzyme choline TMA-lyase (CutC).
View Article and Find Full Text PDFThe essential nutrient choline is metabolized by gut bacteria to the disease-associated metabolite trimethylamine (TMA). However, most of the choline obtained via the diet and present in the human body is incorporated into larger metabolites, including the lipid phosphatidylcholine (PC). Here, we report that many choline-utilizing gut microorganisms can hydrolyse PC using a phospholipase D (PLD) enzyme and further convert the released choline to TMA.
View Article and Find Full Text PDFThe discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ-pyrroline-5-carboxylate (P5C).
View Article and Find Full Text PDFCholine is an essential nutrient and methyl donor required for epigenetic regulation. Here, we assessed the impact of gut microbial choline metabolism on bacterial fitness and host biology by engineering a microbial community that lacks a single choline-utilizing enzyme. Our results indicate that choline-utilizing bacteria compete with the host for this nutrient, significantly impacting plasma and hepatic levels of methyl-donor metabolites and recapitulating biochemical signatures of choline deficiency.
View Article and Find Full Text PDFThrombosis plays an important role in cardiovascular disease (CVD). Platelet activation is an essential step in the genesis and propagation of atherothrombotic complications. In a recent publication, Zhu and colleagues report that gut microbe-derived TMAO enhances platelet responsiveness and thrombosis, providing a novel mechanistic connection between microbes and CVD (Zhu et al.
View Article and Find Full Text PDFUnlabelled: Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum.
View Article and Find Full Text PDFUnlabelled: Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches.
View Article and Find Full Text PDFRelating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10-20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function.
View Article and Find Full Text PDFRhodobacter sphaeroides is able to assemble two different flagella, the subpolar flagellum (Fla1) and the polar flagella (Fla2). In this work, we report the swimming behavior of R. sphaeroides Fla2(+) cells lacking each of the proteins encoded by chemotactic operon 1.
View Article and Find Full Text PDFRhodobacter sphaeroides expresses two different flagellar systems, a subpolar flagellum (fla1) and multiple polar flagella (fla2). These structures are encoded by different sets of flagellar genes. The chemotactic control of the subpolar flagellum (fla1) is mediated by three of the six different CheY proteins (CheY6, CheY4, or CheY3).
View Article and Find Full Text PDF