Publications by authors named "Ana Marie S Palanca"

DNA methylation is essential for gene regulation, transposon silencing and imprinting. Although the generation of specific DNA methylation patterns is critical for these processes, how methylation is regulated at individual loci remains unclear. Here we show that a family of four putative chromatin remodeling factors, CLASSY (CLSY) 1-4, are required for both locus-specific and global regulation of DNA methylation in Arabidopsis thaliana.

View Article and Find Full Text PDF

DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in that suppresses the transcriptional silencing of two ( reporters via a mechanism that is largely downstream of DNA methylation.

View Article and Find Full Text PDF

DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors.

View Article and Find Full Text PDF

Larval zebrafish are emerging as a model for describing the development and function of simple neural circuits. Due to their external fertilization, rapid development, and translucency, zebrafish are particularly well suited for optogenetic approaches to investigate neural circuit function. In this approach, light-sensitive ion channels are expressed in specific neurons, enabling the experimenter to activate or inhibit them at will and thus assess their contribution to specific behaviors.

View Article and Find Full Text PDF

To analyze somatosensory neuron diversity in larval zebrafish, we identified several enhancers from the zebrafish and pufferfish genomes and used them to create five new reporter transgenes. Sequential deletions of three of these enhancers identified small sequence elements sufficient to drive expression in zebrafish trigeminal and Rohon-Beard (RB) neurons. One of these reporters, using the Fru.

View Article and Find Full Text PDF