Publications by authors named "Ana Maria Trunfio-Sfarghiu"

The history of joint replacement can be framed as a battle to reduce wear. Pyrocarbon has been shown to be a low wear material, but can low wear against an ultra high molecular weight polyethylene (UHMWPE) counterface be achieved? To investigate this research question, a 50-station, clinically validated wear screening machine was used. Half the stations tested UHMWPE pins against pyrocarbon discs, and half the stations tested UHMWPE pins against cobalt chromium (CoCr) discs.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create engineered cartilage using pyrocarbon (PyC) biomaterial and differentiated chondrocytes, focusing on a scaffold-free and mechanically stimulated process.
  • By applying uniaxial cyclic compression in a specially designed tribo-bioreactor, the researchers aimed to keep the chondrocytes in a cartilage-like phenotype while enhancing the matrix composition.
  • Findings indicated that the combination of PyC and dynamic stimulation led to denser constructs with improved mechanical properties and no signs of unwanted cell maturation, highlighting the effectiveness of integrating biomaterials with mechanical stimuli in tissue engineering.
View Article and Find Full Text PDF

To ensure selective targeting based on membrane fluidity and physico-chemical compatibility between the biological membrane of the target cell and the lipid membrane of the liposomes carriers. Lipid-based carriers as liposomes with varying membrane fluidities were designed for delivering vincristine, an anti-tumor compound derived from Madagascar's periwinkle. Liposomes, loaded with vincristine, were tested on prostate, colon, and breast cancer cell lines alongside non-tumor controls.

View Article and Find Full Text PDF

While periodontal ligament cells are sensitive to their 3D biomechanical environment, only a few 3D in vitro models have been used to investigate the periodontal cells mechanobiological behavior. The objective of the current study was to assess the capability of a 3D fibrous scaffold to transmit a mechanical loading to the periodontal ligament cells. Three-dimensional fibrous polycaprolactone (PCL) scaffolds were synthetized through electrospinning.

View Article and Find Full Text PDF

The morphology of fibroblast-like synoviocytes (FLS) issued from the synovial fluid (SF) of patients suffering from osteoarthritis (OA), rheumatoid arthritis (RA), or from healthy subjects (H), as well as the ultrastructure and mechanical properties of the FLS-secreted extracellular vesicles (EV), were analyzed by confocal microscopy, transmission electron microscopy, atomic force microscopy, and tribological tests. EV released under healthy conditions were constituted of several lipid bilayers surrounding a viscous inner core. This "gel-in" vesicular structure ensured high mechanical resistance of single vesicles and good tribological properties of the lubricant.

View Article and Find Full Text PDF

The quality of the lubricant between cartilaginous joint surfaces impacts the joint's mechanistic properties. In this study, we define the biochemical, ultrastructural, and tribological signatures of synovial fluids (SF) from patients with degenerative (osteoarthritis-OA) or inflammatory (rheumatoid arthritis-RA) joint pathologies in comparison with SF from healthy subjects. Phospholipid (PL) concentration in SF increased in pathological contexts, but the proportion PL relative to the overall lipids decreased.

View Article and Find Full Text PDF

A new generation of ceramic on ceramic (BIOLOX ®delta) bearings has emerged more than 10 years ago proving a high resistance to wear and good clinical results. However, biological reactions to wear debris, particularly the nanoparticles, need to be evaluated. The first originality of this study is to start from real wear particles obtained by the hip walking simulator (CERsim).

View Article and Find Full Text PDF

BACKGROUND The case of a patient with bilateral renal cancers diagnosed at 94 and 120 months after metal-on-metal hip placement may serve as a warning. It suggests that there may be a need for kidney echography observation of patients with similar types of prostheses. CASE REPORT A 61-year-old woman received a metal-on-metal hip prosthesis for degenerative arthritis in January 2007.

View Article and Find Full Text PDF

Objective: Approximately 750,000 women worldwide have undergone ESSURE hysteroscopic sterilization since 2002. In 2015, an increase in adverse effects was noted, with gynaecological and systemic symptoms reported. Scanning electron microscopy (SEM) analysis of fallopian tube and uterine horn tissues and implants, after hysterectomy or salpingectomy, revealed the presence of inorganic particles resulting from implant degradation.

View Article and Find Full Text PDF

Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. Their clinical success relies on their composition, similar to that of the cell membrane. Their cellular specificity often relies on a ligand-receptor interaction.

View Article and Find Full Text PDF

Introduction: Pre-clinical testing of hemiarthroplasty devices requires that the tribological conditions present in vivo with live cartilage be closely duplicated. A current limitation in the tribological testing of live cartilage involves the use of cell-culture media as lubricant.

Study Aim: to develop and test a new hyaluronan-phospholipid based medium (HA-phospholipid medium) that combines the rheological and frictional properties of synovial fluid with the nourishing properties of culture media to keep cells alive.

View Article and Find Full Text PDF

A better knowledge of synovial fluid (SF) ultrastructure is required to further understand normal joint lubrication and metabolism. The aim of the present study was to elucidate SF structural features in healthy joints from three mammalian species of different size compared with features in biomimetic SF. High-resolution structural analysis was performed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and environmental SEM/wet scanning transmission electron microscopy mode complemented by TEM and SEM cryogenic methods.

View Article and Find Full Text PDF

The objective of this study was to address the following question: 'Which properties are modified in partially demineralized surfaces, compared with non-demineralized dentin surfaces, following orthophosphoric acid-etching as performed in clinical procedures?'. For this purpose, the complementary techniques atomic force microscopy/spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and contact angle measurements were used to provide a multiscale characterization of the dentin substrate undergoing the acidic preconditioning designed to enhance wetting. Special attention was given to the influence of the etching pretreatment on the nanomechanical properties at different levels of dentin surfaces, in both dry and hydrated conditions.

View Article and Find Full Text PDF

Context: Mechanical properties are essential for biological functions of the hyaline cartilage such as energy dissipation and diffusion of solutes. Mechanical properties are primarily dependent on the hierarchical organization of the two major extracellular matrix (ECM) macromolecular components of the cartilage: the fibrillar collagen network and the glycosaminoglycan (GAG)-substituted proteoglycan, mainly aggrecan, aggregates. Interaction of chondrocytes, the only cell type in the tissue, with the ECM through adhesion receptors is involved in establishing mechanical stability via bidirectional transduction of both mechanical forces and chemical signals.

View Article and Find Full Text PDF

Grafting biomimetic polymers onto biomaterials such as implants is one of the promising approaches to increase their tribological performance and biocompatibility and to reduce wear. In this paper, poly(2-methacryloyloxyethyl phosphorylcholine) (p(MPC)) brushes were obtained by photografting MPC from the rough surface of ultra high molecular weight polyethylene (UHMWPE) joint implants. Such substrates have a high roughness (Ra∼650nm) which often has the same order of magnitude as the brush thickness, so it is very difficult to estimate the vertical density profile of the grafted content.

View Article and Find Full Text PDF

Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos Syndrome in humans, mainly characterised by connective tissue defects including the disorganisation of fibrillar networks, a reduced collagen deposition, and modifications in the mechanical properties of dense tissues. Here we tested the effect of tenascin-X on in vitro collagen fibril formation. We observed that the main parameters of fibrillogenesis were unchanged, and that the diameter of fibrils was not significantly different when they were formed in the presence of tenascin-X.

View Article and Find Full Text PDF

The role of phospholipid bilayers in controlling and reducing frictional forces between biological surfaces is investigated by three complementary experiments: friction forces are measured using a homemade tribometer, mechanical resistance to indentation is measured by AFM, and lipid bilayer degradation is controlled in situ during friction testing using fluorescence microscopy. DPPC lipid bilayers in the solid phase generate friction coefficients as low as 0.002 (comparable to that found for cartilage) that are stable through time.

View Article and Find Full Text PDF