Publications by authors named "Ana Maria Feoli"

Pre- and postnatal protein malnutrition (PMN) adversely affects the developing brain in numerous ways, but only a few studies have investigated specific glial parameters. This study aimed to evaluate specific glial changes of rats exposed to pre and postnatal PMN, based on glial fibrillary acidic protein (GFAP) and S100B immunocontents as well as glutamine synthetase (GS), in cerebral cortex, hippocampus, cerebellum and cerebrospinal fluid, on the 2nd, 15th and 60th postnatal days. We found increases in GFAP, S100B and GS in the cerebral cortex at birth, suggesting an astrogliosis.

View Article and Find Full Text PDF

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenol present in grapes and red wine, which has antioxidant properties and a wide range of other biological effects. In this study, we investigated the effect of resveratrol, in a concentration range of 10-250 microM, on primary cortical astrocytes; evaluating cell morphology, parameters of glutamate metabolism such as glutamate uptake, glutamine synthetase activity and glutathione total content, and S100B secretion. Astrocyte cultures were prepared of cerebral cortex from neonate Wistar rats.

View Article and Find Full Text PDF

The brain is particularly susceptible to oxidative insults and its antioxidant defense is dependent on its glutathione content. Protein malnutrition (PMN) is an important and very common insult during development and compromises antioxidant defenses in the body, particularly glutathione levels. We investigated whether brain glutathione content and related metabolic pathways, predominantly regulated by astrocytes (particularly glutamate uptake and glutamine synthesis), are altered by pre- and postnatal PMN in rats.

View Article and Find Full Text PDF

Undernutrition is a worldwide problem affecting millions of unborn and young children during the most vulnerable stages of brain development. Total restriction of protein during the perinatal period of life can alter the development of the mammalian fetus and have marked repercussions on development of the central nervous system (CNS). The brain is vulnerable to undernutrition with altered morphologic and biochemical maturation, leading to impaired functions.

View Article and Find Full Text PDF

Gonadal hormones appear to modulate brain energy metabolism, and morphological and functional sexual differences are found in the amygdaloid complex (AC) of rats. Our aim was to study the CO2 production and lipid synthesis, measured by the rate of L-[U-14C]lactate or D-[U-14C]glucose utilization (in pmol x hr(-1) x mg(-1)), by AC slices in vitro of male and female rats. Lactate was more used than glucose as energy substrate (p < 0.

View Article and Find Full Text PDF