New diagnostic and therapeutic approaches have been increasingly demanded due to the high morbidity and mortality associated with breast cancer. Recently, changes in the collagen fibres in mammary neoplasms have been shown to provide information that can be helpful for more accurate diagnosis. We aimed to conduct a comparative analysis of the tumour stroma in human and canine mammary neoplasms to assess the relationship between collagen modifications and the behaviour of carcinomas in both species, by multiphoton microscopy.
View Article and Find Full Text PDFIntroduction: Prostate cancer (PC) remains a significant global health concern, with prognostic assessments largely reliant on the Gleason Classification System. While it has proven effective, subjectivity in interpretation persists, prompting the need for complementary approaches. Reactive stroma (RS) has emerged as a potential candidate for enhancing PC characterization, as it reflects intricate interactions among stromal, epithelial, and extracellular matrix components.
View Article and Find Full Text PDFSchistosomiasis represents a serious public health problem, a disease for which the circulating cathodic antigen (CCA) is a relevant biomarker. Quantum dots (QDs) are advantageous fluorescent nanoparticles that can be used as specific nanoprobes. In this study, a nanotool based on QDs and anti-CCA antibodies was developed, which, in association with fluorescence microscopy, was applied to trace and evaluate the CCA profile in schistosomiasis-infected tissue samples.
View Article and Find Full Text PDFIntroduction: Mixed tumours in the canine mammary gland are the most common histological type in routine diagnosis. In general, these neoplasms have a favourable prognosis that does not evolve into metastatic disease. However, some cases develop into lymph node metastases and are associated with worse patient survival rates.
View Article and Find Full Text PDFOvercoming the challenge of creating thick, tissue-resembling muscle constructs is paramount in the field of cultivated meat production. This study investigates the remarkable potential of random cellulose acetate nanofibers (CAN) as a transformative scaffold for muscle tissue engineering (MTE), specifically in the context of cultivated meat applications. Through a comparative analysis between random and aligned CAN, utilizing C2C12 and H9c2 myoblasts, we unveil the unparalleled capabilities of random CAN in facilitating muscle differentiation, independent of differentiation media, by exploiting the YAP/TAZ-related mechanotransduction pathway.
View Article and Find Full Text PDFProstate carcinoma, a slow-growing and often indolent tumour, is the second most commonly diagnosed cancer among men worldwide. The prognosis is mainly based on the Gleason system through prostate biopsy analysis. However, new treatment and monitoring strategies depend on a more precise diagnosis.
View Article and Find Full Text PDFThionated nucleobases are obtained by replacing oxygen with sulphur atoms in the canonical nucleobases. They absorb light efficiently in the near-ultraviolet, populating singlet states which undergo intersystem crossing to the triplet manifold on an ultrashort time scale with a high quantum yield. Nonetheless there are still important open questions about the primary mechanisms responsible for this ultrafast transition.
View Article and Find Full Text PDFBy combining UV transient absorption spectroscopy with sub-30-fs temporal resolution and CASPT2/MM calculations, we present a complete description of the primary photoinduced processes in solvated tryptophan. Our results shed new light on the role of the solvent in the relaxation dynamics of tryptophan. We unveil two consecutive coherent population transfer events involving the lowest two singlet excited states: a sub-50-fs nonadiabatic L → L transfer through a conical intersection and a subsequent 220 fs reverse L → L transfer due to solvent-assisted adiabatic stabilization of the L state.
View Article and Find Full Text PDFThe transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature.
View Article and Find Full Text PDFUnderstanding the primary steps following UV photoexcitation in sulphur-substituted DNA bases (thiobases) is fundamental for developing new phototherapeutic drugs. However, the investigation of the excited-state dynamics in sub-100 fs time scales has been elusive until now due to technical challenges. Here, we track the ultrafast decay mechanisms that lead to the electron trapping in the triplet manifold for 6-thioguanine in an aqueous solution, using broadband transient absorption spectroscopy with a sub-20 fs temporal resolution.
View Article and Find Full Text PDFPrecise diagnosis and prognosis are key in prevention and reduction of morbidity and mortality in all types of cancers. Here we show that changes in the collagen fibres in the main histological subtypes of canine mammary gland carcinomas are directly associated with the tumour behaviour and the animal survival time and could become a useful tool in helping with diagnosis. Imaging by second harmonic generation and multiphoton excited fluorescence microscopy were performed to evaluate the collagen and cellular segment parameters in cancer biopsies.
View Article and Find Full Text PDFWe present nonlinear microscopy imaging results and analysis from canine mammary cancer biopsies. Second harmonic generation imaging allows information of the collagen structure in the extracellular matrix that together with the fluorescence of the cell regions of the biopsies form a base for comprehensive image analysis. We demonstrate an automated image analysis method to classify the histological type of canine mammary cancer using a range of parameters extracted from the images.
View Article and Find Full Text PDFOne-dimensional defects in two-dimensional (2D) materials can be particularly damaging because they directly impede the transport of charge, spin, or heat and can introduce a metallic character into otherwise semiconducting systems. Current characterization techniques suffer from low throughput and a destructive nature or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and nondestructively probe grain boundaries and edges in monolayer dichalcogenides (i.
View Article and Find Full Text PDFPhotoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time.
View Article and Find Full Text PDFWe investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale.
View Article and Find Full Text PDFRaman spectroscopy is widely used to investigate the structure and property of the molecules from their vibrational transitions and may allow for the diagnosis of cancer in a fast, objective, and nondestructive manner. This experimental study aims to propose the use of the 1064-nm wavelength laser in a Raman spectroscopy and to evaluate its discrimination capability in prostate cancer diagnosis. Seventy-four spectra from patients who underwent radical prostatectomy were evaluated.
View Article and Find Full Text PDFBackground: The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet.
View Article and Find Full Text PDFWe report on hot photoluminescence measurements that show the effects of acoustic phonon supercollision processes in the intensity of graphene light emission. We use a simple optical method to induce defects on single layer graphene in a controlled manner to study in detail the light emission dependence on the sample defect density. It is now well accepted that the graphene photoluminescence is due to black-body thermal emission from the quasi-equilibrium electrons at a temperature well above the lattice temperature.
View Article and Find Full Text PDFDefects play a fundamental role in the energy relaxation of hot photoexcited carriers in graphene, thus a complete understanding of these processes are vital for improving the development of graphene devices. Recently, it has been theoretically predicted and experimentally demonstrated that defect-assisted acoustic phonon supercollision, the collision between a carrier and both an acoustic phonon and a defect, is an important energy relaxation process for carriers with excess energy below the optical phonon emission. Here, we studied samples with defects optically generated in a controlled manner to experimentally probe the supercollision model as a function of the defect density.
View Article and Find Full Text PDFBackground: Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored.
View Article and Find Full Text PDFExercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.
View Article and Find Full Text PDFThere are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans.
View Article and Find Full Text PDFUnlabelled: Acetaminophen (APAP) is a safe analgesic and antipyretic drug. However, APAP overdose leads to massive hepatocyte death. Cell death during APAP toxicity occurs by oncotic necrosis, in which the release of intracellular contents can elicit a reactive inflammatory response.
View Article and Find Full Text PDF