Publications by authors named "Ana M Perez-Linero"

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation.

View Article and Find Full Text PDF

Understanding how in eukaryotic cells thousands of proteins are sorted from each other through the secretory pathway and delivered to their correct destinations is a central issue of cell biology. We have further investigated in yeast how two distinct types of cargo proteins are sorted into different endoplasmic reticulum (ER) exit sites (ERES) for their differential ER export to the Golgi apparatus. We used an optimized protocol that combines a live cell dual-cargo ER export system with a 3D simultaneous multi-color high-resolution live cell microscopy called Super-resolution Confocal Live Imaging Microscopy (SCLIM).

View Article and Find Full Text PDF

In eukaryotic cells, a subset of cell surface proteins is attached by the glycolipid glycosylphosphatidylinositol (GPI) to the external leaflet of the plasma membrane where they play important roles as enzymes, receptors, or adhesion molecules. Here we present a protocol for purification and mass spectrometry analysis of the lipid moiety of individual GPI-anchored proteins (GPI-APs) in yeast. The method involves the expression of a specific GPI-AP tagged with GFP, solubilization, immunoprecipitation, separation by electrophoresis, blotting onto PVDF, release and extraction of the GPI-lipid moiety and analysis by mass spectrometry.

View Article and Find Full Text PDF

Golgi trafficking depends on the small GTPase Arf1 which, upon activation, drives the assembly of different coats onto budding vesicles. Two related types of guanine nucleotide exchange factors (GEFs) activate Arf1 at different Golgi sites. In yeast, Gea1 in the -Golgi and Gea2 in the medial-Golgi activate Arf1 to form COPI-coated vesicles for retrograde cargo sorting, whereas Sec7 generates clathrin/adaptor-coated vesicles at the -Golgi network (TGN) for forward cargo transport.

View Article and Find Full Text PDF

Protein sorting in the secretory pathway is crucial to maintain cellular compartmentalization and homeostasis. In addition to coat-mediated sorting, the role of lipids in driving protein sorting during secretory transport is a longstanding fundamental question that still remains unanswered. Here, we conduct 3D simultaneous multicolor high-resolution live imaging to demonstrate in vivo that newly synthesized glycosylphosphatidylinositol-anchored proteins having a very long chain ceramide lipid moiety are clustered and sorted into specialized endoplasmic reticulum exit sites that are distinct from those used by transmembrane proteins.

View Article and Find Full Text PDF

The cellular mechanisms that ensure the selectivity and fidelity of secretory cargo protein transport from the endoplasmic reticulum (ER) to the Golgi are still not well understood. The p24 protein complex acts as a specific cargo receptor for GPI-anchored proteins by facilitating their ER exit through a specialized export pathway in yeast. In parallel, the p24 complex can also exit the ER using the general pathway that exports the rest of secretory proteins with their respective cargo receptors.

View Article and Find Full Text PDF

Retrieval mechanisms are essential to dynamically maintain the composition and functional homeostasis of secretory organelles. A recent study has identified a novel class of cargo receptor that retrieves a specific subset of escaped ER folding machinery from the Golgi.

View Article and Find Full Text PDF

Background: Export from the ER is an essential process driven by the COPII coat, which forms vesicles at ER exit sites (ERESs) to transport mature secretory proteins to the Golgi. Although the basic mechanism of COPII assembly is known, how COPII machinery is regulated to meet varying cellular secretory demands is unclear.

Results: Here, we report a specialized COPII system that is actively recruited by luminal cargo maturation.

View Article and Find Full Text PDF