Publications by authors named "Ana M Masini-Repiso"

Congenital iodide transport defect is an uncommon autosomal recessive disorder caused by loss-of-function variants in the sodium iodide symporter (NIS)-coding SLC5A5 gene and leading to dyshormonogenic congenital hypothyroidism. Here, we conducted a targeted next-generation sequencing assessment of congenital hypothyroidism-causative genes in a cohort of nine unrelated pediatric patients suspected of having a congenital iodide transport defect based on the absence of 99mTc-pertechnetate accumulation in a eutopic thyroid gland. Although, unexpectedly, we could not detect pathogenic SLC5A5 gene variants, we identified two novel compound heterozygous TG gene variants (p.

View Article and Find Full Text PDF

Background: Congenital iodide transport defect (ITD) is an uncommon cause of dyshormonogenic congenital hypothyroidism characterized by the absence of active iodide accumulation in the thyroid gland. ITD is an autosomal recessive disorder caused by loss-of-function variants in the sodium/iodide symporter (NIS)-coding gene.

Objective: We aimed to identify, and if so to functionally characterize, novel ITD-causing gene variants in a cohort of five unrelated pediatric patients diagnosed with dyshormonogenic congenital hypothyroidism with minimal to absent Tc-pertechnetate accumulation in the thyroid gland.

View Article and Find Full Text PDF

The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Autosomal recessive iodide transport defect (ITD)-causing loss-of-function NIS variants lead to dyshormonogenic congenital hypothyroidism due to deficient iodide accumulation for thyroid hormonogenesis. Here, we aimed to identify, and if so to functionally characterize, novel ITD-causing NIS pathogenic variants in a patient diagnosed with severe dyshormonogenic congenital hypothyroidism due to a defect in iodide accumulation in the thyroid follicular cell, as suggested by nondetectable radioiodide accumulation in a normally located thyroid gland, as well as in salivary glands.

View Article and Find Full Text PDF

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.

View Article and Find Full Text PDF

Context: Iodide transport defect (ITD) (Online Mendelian Inheritance in Man No. 274400) is an uncommon cause of dyshormonogenic congenital hypothyroidism due to loss-of-function variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells.

Objective: This work aims to determine the molecular basis of a patient's ITD clinical phenotype.

View Article and Find Full Text PDF

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor is a key regulator of cell survival, proliferation, and gene expression. Although activation of NF-κB signaling in thyroid follicular cells after thyrotropin (TSH) receptor (TSHR) engagement has been reported, the downstream signaling leading to NF-κB activation remains unexplored. Here, we sought to elucidate the mechanisms that regulate NF-κB signaling activation in response to TSH stimulation.

View Article and Find Full Text PDF

Iodide transport defect (ITD) is an autosomal recessive disorder caused by deficient iodide accumulation into the thyroid follicular cell. ITD is an uncommon cause of dyshormonogenetic congenital hypothyroidism that results from inactivating mutations in the sodium/iodide symporter (NIS)-coding gene. NIS is a key basolateral plasma membrane glycoprotein that efficiently mediates active iodide uptake in the thyroid-constituting the first step in the biosynthesis of the iodine-containing thyroid hormones-and other tissues, including salivary glands, lactating breast, and small intestine.

View Article and Find Full Text PDF

Iodine is a crucial component of thyroid hormones; therefore, a key requirement for thyroid hormone biosynthesis is that iodide (I) be actively accumulated in the thyroid follicular cell. The ability of the thyroid epithelia to concentrate I is ultimately dependent on functional Na/ I symporter (NIS) expression at the plasma membrane. Underscoring the significance of NIS for thyroid physiology, loss-of-function mutations in the NIS-coding gene cause an I transport defect, resulting in dyshormonogenic congenital hypothyroidism.

View Article and Find Full Text PDF

The Na+/iodide (I-) symporter (NIS), a glycoprotein expressed at the basolateral plasma membrane of thyroid follicular cells, mediates I- accumulation for thyroid hormonogenesis and radioiodide therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit lower I- transport than normal thyroid tissue (or even undetectable I- transport). Paradoxically, the majority of differentiated thyroid cancers show intracellular NIS expression, suggesting abnormal targeting to the plasma membrane.

View Article and Find Full Text PDF

Emerging evidence suggests that unregulated Toll-like receptor (TLR) signaling promotes tumor survival signals, thus favoring tumor progression. Here, the mechanism underlying TLR4 overexpression in papillary thyroid carcinomas (PTC) mainly harboring the BRAF mutation was studied. TLR4 was overexpressed in PTC compared with nonneoplastic thyroid tissue.

View Article and Find Full Text PDF

We reported thyroid hormone (TH) receptor expression in murine dendritic cells (DCs) and 3,5,3'-triiodothyronine (T)-dependent stimulation of DC maturation and ability to develop a Th1-type adaptive response. Moreover, an increased DC capacity to promote antigen-specific cytotoxic T-cell activity, exploited in a DC-based antitumor vaccination protocol, was revealed. However, putative effects of the main circulating TH, l-thyroxine (T) and the mechanisms of TH transport and metabolism at DC level, crucial events for TH action at target cell level, were not known.

View Article and Find Full Text PDF

Iodide has direct effects on thyroid function. Several iodinated lipids are biosynthesized by the thyroid and they were postulated as intermediaries in the action of iodide. Among them, 2-iodohexadecanal (2-IHDA) has been identified and proposed to play a role in thyroid autoregulation.

View Article and Find Full Text PDF

Transcriptional mechanisms associated with iodide-induced downregulation of NIS expression remain uncertain. Here, we further analyzed the transcriptional regulation of NIS gene expression by excess iodide using PCCl3 cells. NIS promoter activity was reduced in cells treated for 12-24 h with 10(-5) to 10(-3) M NaI.

View Article and Find Full Text PDF

Thyroid peroxidase (TPO) is essential for thyroid hormone synthesis mediating the covalent incorporation of iodine into tyrosine residues of thyroglobulin process known as organification. Thyroid-stimulating hormone (TSH) via cAMP signaling is the main hormonal regulator of TPO gene expression. In thyroid cells, TSH-stimulated nitric oxide (NO) production inhibits TSH-induced thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function.

View Article and Find Full Text PDF

Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake.

View Article and Find Full Text PDF

Thyroid hormones are critical for the normal development, growth, and functional maturation of several tissues, including the central nervous system. Iodine is an essential constituent of the thyroid hormones, the only iodine-containing molecules in vertebrates. Dietary iodide (I(-)) absorption in the gastrointestinal tract is the first step in I(-) metabolism, as the diet is the only source of I(-) for land-dwelling vertebrates.

View Article and Find Full Text PDF

Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo.

View Article and Find Full Text PDF

Iodide (I(-)) is an irreplaceable constituent of thyroid hormones and an important regulator of thyroid function, because high concentrations of I(-) down-regulate sodium/iodide symporter (NIS) expression and function. In thyrocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) cascade also inhibits NIS expression and function. Because I(-) excess and PI3K/Akt signaling pathway induce similar inhibitory effects on NIS expression, we aimed to study whether the PI3K/Akt cascade mediates the acute and rapid inhibitory effect of I(-) excess on NIS expression/activity.

View Article and Find Full Text PDF

Thyroid peroxidase (TPO), a tissue-specific enzyme expressed in differentiated thyroid follicular cells, is a major antigen that has been linked to autoimmune thyroid disease. We have previously reported the functional expression of the lipopolysaccharide (LPS) receptor Toll-like receptor 4 on thyroid follicular cells. Here we investigated the effect of LPS in TPO expression and analyzed the mechanisms involved.

View Article and Find Full Text PDF

Dietary I(-) absorption in the gastrointestinal tract is the first step in I(-) metabolism. Given that I(-) is an essential constituent of the thyroid hormones, its concentrating mechanism is of significant physiological importance. We recently described the expression of the Na(+)/I(-) symporter (NIS) on the apical surface of the intestinal epithelium as a central component of the I(-) absorption system and reported reduced intestinal NIS expression in response to an I(-)-rich diet in vivo.

View Article and Find Full Text PDF

Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive agents. Several studies have indicated the important role of dendritic cells (DCs), highly specialized antigen-presenting and immunomodulatory cells, in GC-mediated suppression of adaptive immune responses. Recently, we demonstrated that triiodothyronine (T3) has potent immunostimulatory effects on bone marrow-derived mouse DCs through a mechanism involving T3 binding to cytosolic thyroid hormone receptor (TR) β1, rapid and sustained Akt activation and IL-12 production.

View Article and Find Full Text PDF

Context: Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD.

View Article and Find Full Text PDF

Objective: Idiopathic short stature (ISS) describes short children with normal GH secretion. Although GH treatment increases their heights, growth response to the therapy differs among patients. Thyroid hormones (TH) are essential for longitudinal growth acting mainly through TH receptors (TR) α and β.

View Article and Find Full Text PDF

The Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a variety of biological responses. Na(+)/I(-) symporter (NIS)-mediated iodide uptake is the main rate-limiting step in thyroid hormonogenesis. We have recently reported that LPS stimulates TSH-induced iodide uptake.

View Article and Find Full Text PDF

Despite considerable progress in our understanding of the interplay between immune and endocrine systems, the role of thyroid hormones and their receptors in the control of adaptive immunity is still uncertain. Here, we investigated the role of thyroid hormone receptor (TR) beta(1) signaling in modulating dendritic cell (DC) physiology and the intracellular mechanisms underlying these immunoregulatory effects. Exposure of DCs to triiodothyronine (T(3)) resulted in a rapid and sustained increase in Akt phosphorylation independently of phosphatidylinositol 3-kinase activation, which was essential for supporting T(3)-induced DC maturation and interleukin (IL)-12 production.

View Article and Find Full Text PDF