Sphere formation assay is an accepted cancer stem cell (CSC) enrichment method. CSCs play a crucial role in chemoresistance and cancer recurrence. Therefore, CSC growth is studied in plates and microdevices to develop prediction chemotherapy assays in cancer.
View Article and Find Full Text PDFMicrofluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform.
View Article and Find Full Text PDFIntroduction: Gliomas represent the most prevalent form of brain tumors, among which glioblastomas are the most malignant subtype. Despite advances in comprehending their biology and treatment strategies, median survival remains disappointingly low. Inflammatory processes involving nitric oxide (NO), critically contribute to glioma formation.
View Article and Find Full Text PDFObjective: The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model.
Methods: The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect.
Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues.
View Article and Find Full Text PDFThe expression of inducible nitric oxide (NO) synthase (iNOS) in human bladder cancer (BC) is a poor prognostic factor associated with invasion and tumor recurrence. Here, we evaluated the relevance of iNOS expression in BC progression and in cancer stem cell (CSC) maintenance in a murine BC model. Also, iNOS expression and CSC markers were analyzed in human BC samples.
View Article and Find Full Text PDFBladder cancer (BC) is the ninth most common cancer worldwide, but molecular changes are still under study. During tumor progression, Epithelial cadherin (E-cadherin) expression is altered and β-catenin may be translocated to the nucleus, where it acts as co-transcription factor of tumor invasion associated genes. This investigation further characterizes E-cadherin and β-catenin associated changes in BC, by combining bioinformatics, an experimental murine cell model (MB49/MB49-I) and human BC samples.
View Article and Find Full Text PDFMuscle-invasive bladder cancer (MIBC) is an aggressive form of urothelial bladder carcinoma (UBC) with poorer outcomes compared to the non-muscle invasive form (NMIBC). Higher recurrent rates and rapid progression after relapse in UBC is known to be linked with chronic inflammation. Here, the preclinical murine models of NMIBC (MB49) and MIBC (MB49-I) were used to assess the antitumor effects of DAB-1, an anti-inflammatory aminobenzoic acid derivative we have developed in order to target cancer-related inflammation.
View Article and Find Full Text PDFNitric Oxide (NO) is involved in many physiological and pathological processes. It is generated by a family of NO synthases (NOS), being the inducible isoform, iNOS, responsible for higher amounts of NO. Here, we report that pharmacological inhibition of NO production by l-NAME reduces both viability and MAPK activated signalling pathways in iNOS positive human and murine cancer cell lines.
View Article and Find Full Text PDFThe characterization of murine cell lines is of great importance in order to identify preclinical models that could resemble human diseases. Aberrant glycosylation includes the loss, excessive or novel expression of glycans and the appearance of truncated structures. MB49 and MB49-I are currently the only two murine cell lines available for the development of preclinical bladder cancer models.
View Article and Find Full Text PDFLab on a Chip (LOC) farming systems have emerged as a powerful tool for single cell studies combined with a non-adherent cell culture substrate and single cell capture chips for the study of single cell derived tumor spheres. Cancer is characterized by its cellular heterogeneity where only a small population of cancer stem cells (CSCs) are responsible for tumor metastases and recurrences. Thus, the in vitro strategy to the formation of a single cell-derived sphere is an attractive alternative to identify CSCs.
View Article and Find Full Text PDFConservative treatment for invasive bladder cancer (BC) involves a complete transurethral tumor resection combined with chemotherapy (CT) and radiotherapy (RT). The major obstacles of chemo-radiotherapy are the addition of the toxicities of RT and CT, and the recurrence due to RT and CT resistances. The flavonoid Silybin (Sb) inhibits pathways involved in cell survival and resistance mechanisms, therefore the purpose of this paper was to study in vitro and in vivo, the ability of Sb to improve the response to RT, in two murine BC cell lines, with different levels of invasiveness, placing emphasis on radio-sensitivity, and pathways involved in radio-resistance and survival.
View Article and Find Full Text PDFBackground: A key factor contributing to radio-resistance in conservative invasive bladder cancer (BCa) treatment is tumor hypoxia and a strategy to overcome it is to trigger the production of nitric oxide (NO). On the other hand, ionizing radiation (IR) applied to a primary tumor can induce immunogenic cell death which may set off a cytotoxic immune response against the primary tumor and its metastasis.
Purpose: To study in vitro and in vivo, the role of BCG as a local sensitizer to overcome hypoxia-associated radio-resistance through the production of NO, and as an immune-stimulator to be used in combination with IR to generate a systemic response for invasive BCa treatment.
Purpose: Bacillus Calmette-Guérin is the standard treatment for patients with nonmuscle invasive high histological grade bladder cancer. Previously we found that bacillus Calmette-Guérin induces murine bladder cancer MB49 cell death in vitro and in vivo, generating tissue remodeling, which involves the release of fibroblast growth factor (FGF)-2.
Materials And Methods: We studied the effect of bacillus Calmette-Guérin treatment on FGF-2 and FGF receptor (FGFR) expression in bladder cancer.
Inflammation plays a crucial role in many types of cancer and is known to be involved in their initiation and promotion. As such, it is presently recognized as an important risk factor for several types of cancers such as bladder, prostate and breast cancers. The discovery of novel anti-inflammatory compounds can have a huge implication not only for the treatment of cancer but also as preventive and protective treatment modalities.
View Article and Find Full Text PDFIntroduction: LM38 murine mammary adenocarcinoma model is formed by LM38-LP (myoepithelial and luminal), LM38-HP (luminal) and LM38-D2 (myoepithelial) cell lines. In a previous work, we had shown that LM38-HP and LM38-D2 cell lines are less malignant than the bicellular LM38-LP cell line.
Purpose: To study the role of nitric oxide (NO) as one of the mediators of functional interactions between malignant luminal and myoepithelial cells.
Bladder cancer is the second cause of death for urological tumors in man. When the tumor is nonmuscle invasive, transurethral resection is curative. On the other hand, radical cystectomy is the treatment chosen for patients with invasive tumors, but still under treatment, these patients have high risk of dying, by the development of metastatic disease within 5 years.
View Article and Find Full Text PDFMuscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses.
View Article and Find Full Text PDFPurpose: We evaluated the effects of combined PPARg agonist with bacillus Calmette-Guérin in bladder cancer growth in vitro and in vivo, focusing on the tissue remodeling mechanisms induced by bacillus Calmette-Guérin.
Materials And Methods: PPARs are a superfamily of nuclear receptors that are transcription factors activated by ligands. Activation of PPARg, the γ subtype, causes proliferation inhibition or differentiation of tumor cells.
Purpose: We evaluated the role of inducible nitric oxide synthase and PPARγ as prognostic factors for bladder cancer.
Materials And Methods: Inducible nitric oxide synthase and PPARγ were evaluated by Western blot and immunohistochemistry in a mouse bladder cancer model of nonmuscle invasive and invasive MB49-I tumor cells, and in human bladder cancer samples.
Results: Inducible nitric oxide synthase expression was negative in mouse normal urothelium and higher in invasive than in noninvasive MB49 tumors.
Bladder cancer is frequently associated with chromosomal abnormalities, and the complexity of karyotypes increases with tumor progression. The murine model MB49 is one of the most widely studied models of bladder cancer. We developed the invasive cell line MB49-I by successive in vivo passages of MB49 primary tumors.
View Article and Find Full Text PDFBackground: Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice.
View Article and Find Full Text PDFPurpose: We developed and characterized an orthotopic invasive bladder tumor model.
Material And Methods: The MB49-I invasive bladder tumor cell line was obtained after 13 consecutive in vivo passages of primary tumor obtained by subcutaneous inoculation of MB49 bladder tumor cells in C57Bl/6J male mice.
Results: MB49-I tumor local invasiveness, tumor weight and spontaneous metastatic capacity were higher than in MB49 tumors.