Pneumothorax is an infrequent complication of laparoscopic surgery. Most cases occur during upper abdominal surgery, since a head-down position (Trendelenburg) pushes the liver and peritoneum against the diaphragm, reducing gas release. When it is due to CO2 diffusion across congenital diaphragmatic defects, it usually resolves itself spontaneously after de-insufflation of the pneumoperitoneum.
View Article and Find Full Text PDFInsoluble aggregates staining positive to amyloid dyes are known histological hallmarks of different neurodegenerative disorders and of type II diabetes. Soluble oligomers are smaller assemblies whose formation prior to or concomitant with amyloid deposition has been associated to the processes of disease propagation and cell death. While the pathogenic mechanisms are complex and differ from disease to disease, both types of aggregates are important biological targets subject to intense investigation in academia and industry.
View Article and Find Full Text PDFThe study of drug candidates for the treatment of amyloidosis and neurodegenerative diseases frequently involves in vitro measurements of amyloid fibril formation. Macromolecular crowding and off-pathway aggregation (OPA) are, by different reasons, two important phenomena affecting the scalability of amyloid inhibitors and their successful application in vivo. On the one hand, the cellular milieu is crowded with macromolecules that drastically increase the effective (thermodynamic) concentration of the amyloidogenic protein.
View Article and Find Full Text PDFToxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of aggregation associated with the formation of amyloid fibrils. Despite their relevance, the heterogeneity and transience of these oligomers have placed great barriers in our understanding of their structural properties. Among amyloid intermediates, annular oligomers or annular protofibrils have raised considerable interest because they may contribute to a mechanism of cellular toxicity via membrane permeation.
View Article and Find Full Text PDFSome of the most prevalent neurodegenerative diseases are characterized by the accumulation of amyloid fibrils in organs and tissues. Although the pathogenic role of these fibrils has not been completely established, increasing evidence suggests off-pathway aggregation as a source of toxic/detoxicating deposits that still remains to be targeted. The present work is a step toward the development of off-pathway modulators using the same amyloid-specific dyes as those conventionally employed to screen amyloid inhibitors.
View Article and Find Full Text PDFThe methodology adopted by Michaelis and Menten in 1913 is still routinely used to characterize the catalytic power and selectivity of enzymes. These kinetic measurements must be performed soon after the purified enzyme is mixed with a large excess of substrate. Other time scales and solution compositions are no less physiologically relevant, but fall outside the range of applicability of the classical formalism.
View Article and Find Full Text PDFThe aim of this work was to investigate the possibility of producing microparticles containing β-galactosidase, using different biopolymers (arabic gum, chitosan, modified chitosan, calcium alginate and sodium alginate) as encapsulating agents by a spray-drying process. This study focused on the enzyme β-galactosidase, due to its importance in health and in food processing. Encapsulation of β-galactosidase can increase the applicability of this enzyme in different processes and applications.
View Article and Find Full Text PDFBackground: Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated.
View Article and Find Full Text PDFAssociated with neurodegenerative disorders such as Alzheimer, Parkinson, or prion diseases, the conversion of soluble proteins into amyloid fibrils remains poorly understood. Extensive "in vitro" measurements of protein aggregation kinetics have been reported, but no consensus mechanism has emerged until now. This contribution aims at overcoming this gap by proposing a theoretically consistent crystallization-like model (CLM) that is able to describe the classic types of amyloid fibrillization kinetics identified in our literature survey.
View Article and Find Full Text PDFTTR (transthyretin) was found recently to possess proteolytic competency besides its well-known transport capabilities. It was described as a cryptic serine peptidase cleaving multiple natural substrates (including β-amyloid and apolipoprotein A-I) involved in diseases such as Alzheimer's disease and atherosclerosis. In the present study, we aimed to elucidate the catalytic machinery of TTR.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2011
Human transthyretin (TTR) is a homotetrameric protein that is responsible for the formation of amyloid in patients with familiar amyloidotic polyneuropathy (FAP), familiar amyloidotic cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Amyloid fibrils are characterized by a cross-β structure. However, details of how TTR monomers are organized to form such an assembly remain unknown.
View Article and Find Full Text PDFThe receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor involved in various human diseases, as it binds to numerous molecules and proteins that modulate the activity of other proteins. Elucidating the three-dimensional structure of this receptor is therefore most important for understanding its function during activation and cellular signaling. The major alternative splice product of RAGE comprises its extracellular region that occurs as a soluble protein (sRAGE).
View Article and Find Full Text PDFTransthyretin (TTR) is an important human transport protein present in the serum and the cerebrospinal fluid. Aggregation of TTR in the form of amyloid fibrils is associated with neurodegeneration, but the mechanisms of cytotoxicity are likely to stem from the presence of intermediate assembly states. Characterization of these intermediate species is therefore essential to understand the etiology and pathogenesis of TTR-related amyloidoses.
View Article and Find Full Text PDFFourteen baicalein and 3,7-dihydroxyflavone derivatives were synthesized and evaluated for their inhibitory activity against the in vitro growth of three human tumor cell lines. The synthetic approaches were based on the reaction with prenyl or geranyl bromide in alkaline medium, followed by cyclization of the respective monoprenylated derivative. Dihydropyranoflavonoids were also obtained by one-pot synthesis, using Montmorillonite K10 clay as catalyst combined with microwave irradiation.
View Article and Find Full Text PDFTransthyretin (TTR) is a homotetrameric protein that transports thyroxine and retinol. Tetramer destabilization and misfolding of the released monomers result in TTR aggregation, leading to its deposition as amyloid primarily in the heart and peripheral nervous system. Over 100 mutations of TTR have been linked to familial forms of TTR amyloidosis.
View Article and Find Full Text PDFVaccine and drug development for fasciolasis rely on a thorough understanding of the mechanisms involved in parasite-host interactions. FH8 is an 8 kDa protein secreted by the parasite Fasciola hepatica in the early stages of infection. Sequence analysis revealed that FH8 has two EF-hand Ca(2+)-binding motifs, and our experimental data show that the protein binds Ca(2+) and that this induces conformational alterations, thus causing it to behave like a sensor protein.
View Article and Find Full Text PDFBackground: Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser.
View Article and Find Full Text PDFIn a study involving the synthesis of bis-intercalators, a bisxanthone and a minor product, 1-(6-bromohexyloxy)-xanthone were obtained. Although no capacity to inhibit the growth of human tumor cell lines was observed for the bisxanthone, the bromoalkoxyxanthone revealed this biological activity. In light of these results bromoalkylation of 3,4-dihydroxyxanthone furnished two bromohexyloxyxanthones that were investigated for their effect on the in vitro growth of human tumor cell lines MCF-7 (ER+, breast), MDA-MB-231 (ER-, breast), NCI-H460 (non-small lung), and SF-268 (central nervous system).
View Article and Find Full Text PDFThe thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
October 2009
In the title compound, C(18)H(16)O(4), a monoprenylated xanthone, the xanthone skeleton exhibits an essentially planar conformation (r.m.s.
View Article and Find Full Text PDFBackground: About 98% of male affected with cystic fibrosis (CF [MIM 219700]) are infertile due to bilateral absence of vas deferens (CBAVD [MIM 277180]), which makes up 1-2 % of all cases with male infertility. A previous screening of the entire coding region of the cystic fibrosis transmembrane conductance regulator gene (CFTR [MIM 602421]) in CBAVD patients identified three novel mutations: P439S is located in the first nucleotide binding domain (NBD1) of CFTR, whereas P1290S and E1401K are located in NBD2.
Methods: We analysed the effects of these novel mutations on CFTR processing and chloride (Cl(-)) channel activity.
Background: Vapor diffusion is the most widely used technique for protein crystallization and the rate of water evaporation plays a key role on the quality of the crystals. Attempts have been made in the past to solve the mass transfer problem governing the evaporation process, either analytically or by employing numerical methods. Despite these efforts, the methods used for protein crystallization remain based on trial and error techniques rather than on fundamental principles.
View Article and Find Full Text PDFTransthyretin (TTR) is a plasma homotetrameric protein associated with senile systemic amyloidosis and familial amyloidotic polyneuropathy. In theses cases, TTR dissociation and misfolding induces the formation of amyloidogenic intermediates that assemble into toxic oligomeric species and lead to the formation of fibrils present in amyloid deposits. The four TTR monomers associate around a central hydrophobic channel where two thyroxine molecules can bind simultaneously.
View Article and Find Full Text PDFThe synthesis, structure elucidation, and antitumor activity of 11 xanthones are reported, being the compounds 3, 4, 6-8, and 9 described for the first time. Xanthones 1 and 2 were used as building blocks to obtain the prenylated derivatives 3-8. Prenylation was carried out using prenyl bromide in alkaline medium.
View Article and Find Full Text PDF