Gait initiation is defined as the transition from stationary standing to steady-state walking. Despite the frequent use of therapy pools for training walking in early stages of rehabilitation, none have been reported on the effects of immersion on gait initiation. We aimed to analyze the center of pressure (COP) trajectories, the vertical and anteroposterior impulses and upper and lower trunk accelerations during anticipatory (APA) and execution phases of gait initiation.
View Article and Find Full Text PDFObjective: To investigate the effects of gait training with body weight support (BWS) on a treadmill versus overground in individuals with chronic stroke.
Design: Randomized controlled trial.
Setting: University research laboratory.
Although postural control requires the integration of different sensory cues, little is known about the role of attentional artifacts on the individual's ability to properly respond to postural challenges. This study investigated the effects of concomitant tasks (cognitive and postural) on the relationship between visual information and body sway. Thirty healthy adults were asked to stand still inside of a moving room on normal and reduced bases of support.
View Article and Find Full Text PDFBackground: Ear Acupuncture (EA) is a form of acupuncture in which needles are applied to the external ear and has been used in multiple painful conditions. Low back pain (LBP) is highly prevalent in active individuals and causes high economic burden to health systems worldwide. LBP affects the person's ability to keep balance, especially in challenging conditions.
View Article and Find Full Text PDFAquatic therapies are used to restore step initiation in people with locomotor disabilities. However, there is lack of evidence of underlining mechanisms of gait initiation in water. We investigated center of pressure (CoP), vertical and anterior-posterior impulse forces, and kinematics of the first step performed in water in comparison with overground walking.
View Article and Find Full Text PDFBackground: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments.
Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground.
Body weight support (BWS) has become a typical strategy for gait training, in special with children with cerebral palsy (CP). Although several findings have been reported in the literature, it remains uncertain how different types of surfaces and gradual amount of BWS can facilitate the mobility of children with CP. The aim of this study was to investigate gait kinematic parameters of children with CP by manipulating BWS and two different types of ground surfaces.
View Article and Find Full Text PDFObjective. To determine if gait waveform could discriminate children with diplegic cerebral palsy of the GMFCS levels I and II. Patients.
View Article and Find Full Text PDFBackground: The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface.
Objective: To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function.
The aim of this study was to examine the coupling between visual information and body sway and the adaptation in this coupling of individuals with cerebral palsy (CP). Fifteen children with and 15 without CP, 6-15 years old, were required to stand upright inside of a moving room. All children first performed two trials with no movement of the room and eyes open or closed, then four trials in which the room oscillated at 0.
View Article and Find Full Text PDFBackground: It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS.
Methods: Twelve individuals with chronic stroke (53.
This study investigated the influence of gymnastics training on the postural control of children with and without the use of visual information. Two age groups, aged 5-7 and 9-11 years old, of gymnasts and nongymnasts were asked to maintain an upright and quiet stance on a force platform with eyes open (EO) and eyes closed (EC) for 30s. Area of the stabilogram (AOS) and mean velocity of the center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were calculated and used to investigate the effects of gymnastics training, age, and visual information.
View Article and Find Full Text PDFObjective: to analyze the spatial-temporal characteristics and joint angles during overground walking without body weight support (BWS) and with 0% and 30% BWS, and during treadmill walking with the same BWS in children with cerebral palsy.
Methods: six children with hemiplegic and spastic cerebral palsy (7.70 ± 1.
Background: Body weight support (BWS) systems on treadmill have been proposed as a strategy for gait training of subjects with stroke. Considering that ground level is the most common locomotion surface and that there is little information about individuals with stroke walking with BWS on ground level, it is important to investigate the use of BWS on ground level in these individuals as a possible alternative strategy for gait training.
Methods: Thirteen individuals with chronic stroke (four women and nine men; mean age 54.
This study examined the influence of both optic flow characteristics and intention on postural control responses. Two groups of 10 adults each were exposed to the room's movement either at 0.6 cm/s (low velocity group) or 1.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
June 2008
In this study, we examined Spatial-temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70+/-6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29+/-6 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride's initial contact in water than on land.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
June 2006
Although water environment has been employed for different physical activities, there is little available information regarding the biomechanical characteristics of walking in shallow water. In the present study, we investigated the kinematics, ground reaction forces (GRF), and electromyographic (EMG) activation patterns of eight selected muscles of adults walking in shallow water and on land. Ten healthy adults were videotaped while walking at self-selected comfortable speeds on land and in water (at the Xiphoid process level).
View Article and Find Full Text PDF