DNA origami is an emerging technology that can be used as a nanoscale platform in numerous applications ranging from drug delivery systems to biosensors. The DNA nanostructures are assembled from large single-stranded DNA (ssDNA) scaffolds, ranging from hundreds to thousands of nucleotides and from short staple strands. Scaffolds are usually obtained by asymmetric PCR (aPCR) or infection/transformation with phages or phagemids.
View Article and Find Full Text PDFUnderstanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2023
Irish dance is growing in popularity, evolving to a more athletic and demanding dance style. The aim of this study is to conduct a systematic review, previously registered with PROSPERO, to identify the prevalence, incidence, and the injury pattern among Irish dancers and analyse the associated risk factors. Six online databases and two dance-specific science publications were searched systematically.
View Article and Find Full Text PDFMessenger RNA (mRNA) vaccines are a new alternative to conventional vaccines with a prominent role in infectious disease control. These vaccines are produced in in vitro transcription (IVT) reactions, catalyzed by RNA polymerase in cascade reactions. To ensure an efficient and cost-effective manufacturing process, essential for a large-scale production and effective vaccine supply chain, the IVT reaction needs to be optimized.
View Article and Find Full Text PDFIn recent years, there has been an increased interest in exploring the potential of micro-and mesoscale milling technologies for developing cost-effective microfluidic systems with high design flexibility and a rapid microfabrication process that does not require a cleanroom. Nevertheless, the number of current studies aiming to fully understand and establish the benefits of this technique in developing high-quality microsystems with simple integrability is still limited. In the first part of this study, we define a systematic and adaptable strategy for developing high-quality poly(methyl methacrylate) (PMMA)-based micromilled structures.
View Article and Find Full Text PDFIn the last decade, there has been a growing interest in developing microfluidic systems as new scale-down models for accelerated and cost-effective biopharmaceutical process development. Nonetheless, the research in this field is still in its infancy and requires further investigation to simplify and accelerate the microfabrication process. In addition, integration of different label-free sensors into the microcolumn systems has utmost importance to minimize result discrepancies during the scale-up process.
View Article and Find Full Text PDFHigh-throughput technologies are fundamental to expedite the implementation of novel purification platforms. The possibility of performing process development within short periods of time while saving consumables and biological material are prime features for any high-throughput screening device. In this work, a microfluidic device is evaluated as high-throughput solution for a complete study of chromatographic operation conditions on ten different multimodal resins.
View Article and Find Full Text PDFBacteriophages, or simply phages, are the most abundant biological entities on Earth. One of the most interesting characteristics of these viruses, which infect and use bacteria as their host organisms, is their high level of specificity. Since their discovery, phages became a tool for the comprehension of basic molecular biology and originated applications in a variety of areas such as agriculture, biotechnology, food safety, veterinary, pollution remediation and wastewater treatment.
View Article and Find Full Text PDFVaccines are one of the most important tools in public health and play an important role in infectious diseases control. Owing to its precision, safe profile and flexible manufacturing, mRNA vaccines are reaching the stoplight as a new alternative to conventional vaccines. In fact, mRNA vaccines were the technology of choice for many companies to combat the Covid-19 pandemic, and it was the first technology to be approved in both United States and in Europe Union as a prophylactic treatment.
View Article and Find Full Text PDFThe high incidence of skeletal anomalies in Senegalese sole () still constitutes a bottleneck constraining its production. There are diverse commercially available products for the enrichment of live preys, but few reports of their influence on skeletogenesis in Senegalese sole. This study evaluated the presence of vertebral anomalies in postlarvae and juvenile Senegalese sole fed with spp.
View Article and Find Full Text PDFMultimodal (MM) chromatography can be described as a chromatographic method that uses more than one mode of interaction between the target molecule and the ligand to achieve a particular separation. Owing to its advantages over traditional chromatography, such as higher selectivity and capacity, its application for the purification of biomolecules with therapeutic interest has been widely studied. The potential of MM chromatography for the purification of plasmid DNA has been demonstrated.
View Article and Find Full Text PDFA method for the intermediate recovery of plasmid DNA (pDNA) from alkaline lysates is described that comprises differential isopropanol precipitation steps. In a first low-cut precipitation, a smaller amount of isopropanol (20% v/v) is used so that only high molecular weight RNA precipitates. After solid liquid separation, a high-cut precipitation is performed by bringing isopropanol concentration to 70% v/v to precipitate pDNA.
View Article and Find Full Text PDFWhile packed bed chromatography, known as conventional chromatography, has been serving the biopharmaceutical industry for decades as the bioseparation method of choice, alternative approaches are likely to take an increasing leading role in the next few years. The high number of new biological drugs under development, and the need to make biopharmaceuticals widely accessible, has been driving the academia and industry in the quest of anything but conventional chromatography approaches. In this perspective paper, these alternative approaches are discussed in view of current and future challenges in the downstream processing field.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Different algorithms can be used to estimate the pose of musculoskeletal models in biomechanical studies. Visual 3D uses segment optimization whereas OpenSim uses global optimization. Thus, our purpose was to study whether the two approaches would influence the estimation of lower extremity biomechanical parameters.
View Article and Find Full Text PDFObjectives: Dancers frequently perform jump-landing activities, with the foot-ankle complex playing an essential role to attenuate the landing forces. However, scarce research has been conducted in professional dancers multi-segmented foot in landings. The aim of this study was to compare the multi-segmented foot kinematics between professional dancers and non-dancers, during forward and lateral single-leg jump-landings.
View Article and Find Full Text PDFThe foot-ankle complex is a key-element to mitigate impact forces during jump-landing activities. Biomechanical studies commonly model the foot as a single-segment, which can provide different ankle kinematics compared to a multi-segmented model. Also, it can neglect intersegmental kinematics of the foot-ankle joints, such as the hindfoot-tibia, forefoot-hindfoot, and hallux-forefoot joints, that are used during jump-landing activities.
View Article and Find Full Text PDFOver the past decade significant progress has been found in the upstream production processes, shifting the main bottlenecks in current manufacturing platforms for biopharmaceuticals towards the downstream processing. Challenges in the purification process include reducing the production costs, developing robust and efficient purification processes as well as integrating both upstream and downstream processes. Microfluidic technologies have recently emerged as effective tools for expediting bioprocess design in a cost-effective manner, since a large number of variables can be evaluated in a small time frame, using reduced volumes and manpower.
View Article and Find Full Text PDFPhenylboronate chromatography has been employed for bioseparation applications though details concerning the mechanisms of interaction between the ligand and macromolecules remain widely unknown. Here, the phenomena underlying the adsorption of an anti-human interleukin-8 (anti-IL8) monoclonal antibody (mAb) onto an m-aminophenylboronic acid (m-APBA) ligand in the presence of different mobile-phase modulators (NaF/MgCl /(NH ) SO ) and under different pH values (7.5/8.
View Article and Find Full Text PDFIn this work, two phage biopanning strategies were developed to identify affinity peptides for a single Fab and multiple kappa Fabs. For the biopanning rounds, protein L beads were employed to bind Fab targets in a fixed orientation, and NHS functionalized magnetic beads were used to facilitate evaluation of low pH elution conditions. The resulting peptide sequences were synthesized and the binding to different Fabs was evaluated using fluorescence polarization.
View Article and Find Full Text PDFThe optimization of chromatography ligands for the purification of biopharmaceuticals is highly demanded to meet the needs of the pharmaceutical industry. In the case of monoclonal antibodies (mAbs), synthetic ligands comprising multiple types of interactions (multimodal) provide process and economic advantages compared to protein-based affinity ligands. However, optimizing the operation window of these ligands requires the development of effective high-throughput screening platforms.
View Article and Find Full Text PDFAqueous two-phase extraction (ATPE) has been showing significant potential in the biopharmaceutical industry, allowing the selective separation of high-value proteins directly from unclarified cell culture supernatants. In this context, effective high-throughput screening tools are critical to perform a rapid empirical optimization of operating conditions. In particular, microfluidic ATPE screening devices, coupled with fluorescence microscopy to continuously monitor the partition of fluorophore-labeled proteins, have been recently demonstrated to provide short diffusion distances and rapid partition, using minimal reagent volumes.
View Article and Find Full Text PDFMed Sci Sports Exerc
March 2019
Purpose: This study aimed to compare lower extremity (LE) biomechanics between professional dancers (PD) and nondancers (ND) during multidirectional single-leg landings.
Methods: Fifteen PD (27 ± 7 yr, 1.69 ± 0.
Skeletal anomalies affect animal welfare and cause important economic problems in aquaculture. Despite the high frequency of skeletal problems in reared Solea senegalensis, there is lack of information regarding the histological features of normal and deformed vertebrae in this flatfish. The aim of this study was to describe the histopathological and radiographical appearance of vertebral body anomalies.
View Article and Find Full Text PDF