The modification of metallic surfaces with adsorbed atoms of a second metal is presented as an ideal method for producing electrocatalysts. In this work, we examined the role of Au atoms in the reactivity of Pt surfaces and their effect on the adsorption and diffusion of CO using first-principles calculations. Our comprehensive study utilized density functional theory (DFT) to analyze a variety of adsorption sites on single-crystal Pt structures, encompassing open and staggered configurations.
View Article and Find Full Text PDFThis study demonstrates the application of Langmuir and Langmuir-Blodgett films as biomimetic drug reservoirs and delivery systems to investigate the effect of an anthelmintic on cancer cell culture. The repurposing of benzimidazole anthelmintics for cancer therapy due to their microtubule-inhibiting properties has gained attention, showing promising anticancer effects and tumor-suppressive properties. Although widely used in medicine, the low aqueous solubility of benzimidazole compounds poses challenges for studying their effects on cancer cells, requiring incorporation into various formulations.
View Article and Find Full Text PDFLangmuir and Langmuir-Blodgett films holding a synthetic bioinspired wound healing active compound were used as drug-delivery platforms. Palmitic acid Langmuir monolayers were able to incorporate 2-methyltriclisine, a synthetic Triclisine derivative that showed wound healing activity. The layers proved to be stable and the nanocomposites were transferred to solid substrates.
View Article and Find Full Text PDFOrganic macromolecules with dendrimeric architectures are polymeric materials potentially useful as nanocarriers for therapeutic drugs. In this work, we evaluate a series of Newkome-type dendrons in Langmuir and Langmuir-Blodgett films as platforms capable of interacting with a potential antitumoral agent. The nanocomposite is proposed as model for the development of surface mediated drug delivery systems.
View Article and Find Full Text PDF