Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.
View Article and Find Full Text PDFThe mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.
View Article and Find Full Text PDFRationale: Guanosine has been shown to potentiate ketamine's antidepressant-like actions, although its ability to augment the anxiolytic effect of ketamine remains to be determined.
Objective: This study investigated the anxiolytic-like effects of a single administration with low doses of ketamine and/or guanosine in mice subjected to chronic administration of corticosterone and the role of NLRP3-driven signaling.
Methods: Corticosterone (20 mg/kg, p.
Prog Neuropsychopharmacol Biol Psychiatry
December 2021
Ketamine exhibits rapid and sustained antidepressant responses, but its repeated use may cause adverse effects. Augmentation strategies have been postulated to be useful for the management/reduction of ketamine's dose and its adverse effects. Based on the studies that have suggested that ketamine and guanosine may share overlapping mechanisms of action, the present study investigated the antidepressant-like effect of subthreshold doses of ketamine and guanosine in mice subjected to repeated administration of corticosterone (CORT) and the role of mTORC1 signaling for this effect.
View Article and Find Full Text PDFKetamine has been reported to exert a prophylactic effect against stress-induced depressive-like behavior by modulating the guanosine-based purinergic system. However, the molecular pathways underlying its prophylactic effect and whether guanosine also elicits a similar effect remain to be determined. Here, we investigated the prophylactic effect of ketamine and guanosine against corticosterone (CORT - 20 mg/kg, p.
View Article and Find Full Text PDFAugmentative treatment is considered the best second-option when a first-choice drug has partial limitations, particularly by allowing antidepressant dose reduction. Considering that ketamine has significant knock-on effects, this study investigated the effects of a single coadministration with subthreshold doses of ketamine plus guanosine in a corticosterone (CORT)-induced animal model of depression and the role of anti-inflammatory and antioxidant pathways. CORT administration (20 mg/kg, p.
View Article and Find Full Text PDFSeveral attempts have been made to understand the role of cholecalciferol (vitamin D) in the modulation of neuropsychiatric disorders. Notably, the deficiency of vitamin D is considered a pandemic and has been postulated to enhance the risk of major depressive disorder (MDD). Therefore, this study aims to investigate the antidepressant-like effect of cholecalciferol in a mouse model of depression induced by corticosterone, and the possible role of glucocorticoid receptors (GR), NLRP3 and autophagic pathways in this effect.
View Article and Find Full Text PDFBackground Augmentation therapies may be effective strategies to potentiate the ketamine's actions with lower potential for knock-on effects. Thus, this study investigated the ability of combined administration of guanosine plus ketamine to elicit an antidepressant-like effect associated with mTOR pathway modulation. The ability of this combined administration to exert an antidepressant-like effect in a model of depression was also evaluated.
View Article and Find Full Text PDFThe pathophysiology of depression includes glucocorticoids excess, glutamatergic excitotoxicity, and oxidative stress impairment. Previous study demonstrated Morus nigra L. leaves extract and syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), its major phenolic compound, administered orally for 7 days, decreased the immobility time in the tail suspension test, without locomotor alteration.
View Article and Find Full Text PDFMorus nigra L. (Moraceae) is a tree known as black mulberry and the leaves are used in folk medicine in the treatment of diabetes, high cholesterol and menopause symptoms. The aim of this study was to evaluate the M.
View Article and Find Full Text PDFEthnopharmacological Relevance: Aloysia gratissima (Verbenaceae) is an aromatic plant distributed in South America and, employed in folk medicine for the treatment of nervous systems illness, including depression. The neuroprotective and antidepressant-like activities of the aqueous extract of Aloysia gratissima (AE) administered orally has already been demonstrated.In this study the involvement of monoaminergic systems in the antidepressant-like effect of the AE was investigated.
View Article and Find Full Text PDFAtorvastatin is a synthetic and lipophilic statin that presents a good effect in decreasing cholesterol levels and is safe and well tolerated. Population-based studies have suggested a positive role of statins in reducing depression risk. This study aimed at investigating the atorvastatin effect in the tail suspension test (TST) and in the forced swimming test (FST).
View Article and Find Full Text PDFFerulic acid (4-hydroxy-3-methoxycinnamic acid) is a phenolic compound present in several plants with claimed beneficial effects in prevention and treatment of disorders linked to oxidative stress and inflammation. In this study, we aimed to verify the possible antidepressant-like effect of acute oral administration of ferulic acid in the forced swimming test (FST) and tail suspension test (TST) in mice. Additionally, the mechanisms involved in the antidepressant-like action and the effects of the association of ferulic acid with the antidepressants fluoxetine, paroxetine, and sertraline in the TST were investigated.
View Article and Find Full Text PDF