Publications by authors named "Ana Lavinia Vasiliu"

The aim of this study was to examine the use of zwitterionic microparticles as new and efficient macromolecular supports for the sorption of an antibiotic (doxycycline hydrochloride, DCH) from aqueous solution. The effect of relevant process parameters of sorption, like dosage of microparticles, pH value, contact time, the initial concentration of drug and temperature, was evaluated to obtain the optimal experimental conditions. The sorption kinetics were investigated using Lagergren, Ho, Elovich and Weber-Morris models, respectively.

View Article and Find Full Text PDF

Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different beverages affect the surface properties of seven types of dental composite materials used in restorative dentistry.
  • The research utilized techniques like EDAX and XRF to analyze changes in the materials after immersion in various drinks.
  • Findings emphasize the importance of dietary choices, particularly avoiding acidic beverages, to enhance the longevity of dental composites and protect patients' overall oral health.
View Article and Find Full Text PDF

Crosslinked porous microparticles have received great attention as drug delivery systems lately due to their unique set of properties: the capability to form various polymer-drug combinations, low immunogenicity, patient compliance and ability to release drugs in a delayed or controlled manner. Moreover, polymers with betaine groups have shown some unique features such as antifouling, antimicrobial activity, biocompatibility and strong hydration properties. Herein, novel porous zwitterionic microparticles were prepared in two stages.

View Article and Find Full Text PDF

Due to their highly reactive character and multiple crosslinking capacity, epoxy resins are one of the worldwide market-dominating classes of thermosetting polymers and are present in a wide range of technical applications, including structural adhesives, coatings and polymer matrices for composite materials. Despite their excellent features, epoxy resins are known to be highly flammable and possess low thermal stability and a brittle character and crack easily under impact forces. An efficient approach towards eliminating such drawbacks resides in obtaining epoxy-based semi-interpenetrating polymer networks, which possess excellent control over the morphology.

View Article and Find Full Text PDF

Recently, the development of new materials with the desired characteristics for functional tissue engineering, ensuring tissue architecture and supporting cellular growth, has gained significant attention. Hydrogels, which possess similar properties to natural cellular matrixes, being able to repair or replace biological tissues and support the healing process through cellular proliferation and viability, are a challenge when designing tissue scaffolds. This paper provides new insights into hydrogel-based polymeric blends (hydroxypropyl cellulose/Pluronic F68), aiming to evaluate the contributions of both components in the development of new tissue scaffolds.

View Article and Find Full Text PDF

In spite of its versatility, the emulsion templating method is rather uncommon for the preparation of porous silicones. In this contribution, two siloxane-containing stabilizers, designed to be soluble in polar (water) and non-polar (toluene) solvents, respectively, were used in low concentrations to produce stable emulsions, wherein polysiloxane gels were obtained by UV-photoinitiated thiol-ene click cross-linking. The stabilizers exhibited negative interfacial tension, as measured by Wilhelmy plate tensiometry.

View Article and Find Full Text PDF

The application of several ion-exchange resins (IExR) with amino and amphoteric functionalities in batch retention of heavy metal ions (HMIs) (Cu(II), Fe(II), Mn(II), Zn(II)) from mono- and multicomponent simulated waters and from real polluted water collected from tailings pond of Tarnita (Suceava, Romania) sterile dump is deeply herein explored. The tested resins exhibited high sorption capacities, as evaluated by atomic absorption spectrometry, results supported by infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The effect of pH on the IExR sorption capacity in competitive condition evidenced the optimum pH where IExR sorption efficiency is maximum.

View Article and Find Full Text PDF

Interpenetrating polymer networks (IPNs) represent an interesting approach for tuning the properties of silicone elastomers due to the possible synergism that may occur between the networks. A new approach is presented, which consists of mixing two silicone-based networks with different crosslinking pathways; the first network being cured by condensation route and the second network by UV curing. The networks were mixed in different ratios and the resulted samples yield good mechanical properties (improved elongations, up to 720%, and Young's modulus, 1 MPa), thermal properties (one glass transition temperature, ~-123 °C), good dielectric strength (~50 V/μm), and toughness (63 kJ/m).

View Article and Find Full Text PDF

Herein, we report a simple method to obtain hydrophobic surfaces by surface modification with calcium carbonate via diffusion-controlled crystallization using a cheap, versatile, and super-hydrophilic cellulose-based nonwoven material (NWM) as the substrate. To control the CaCO crystal growth, the ammonium carbonate diffusion method was applied in the presence of polyanions [poly(acid acrylic), poly(2-acrylamido-2-methylpropanesulfonic acid), and a copolymer which contains 55 mol % 2-acrylamido-2-methylpropanesulfonic acid and 45 mol % acrylic acid] or nonstoichiometric polyelectrolyte complexes with polycations [poly(allylamine hydrochloride) and chitosan] on a pristine NWM and on polycation-treated surfaces. The surface morphology obtained by calcite growth under surface or environmental functional groups' influence and the hydrophilic/hydrophobic character of the composite materials were followed and compared to that of the starting material.

View Article and Find Full Text PDF

Non-thermal plasma activated water (PAW) has recently emerged as a powerful antimicrobial agent. Despite numerous potential bio-medical applications, studies concerning toxicity in live animals, especially after long-term exposure, are scarce. Our study aimed to assess the effects of long-term watering with PAW on the health of CD1 mice.

View Article and Find Full Text PDF

Polylactic acid (PLA) films were coated by coaxial electrospinning with essential and vegetable oils (clove and argan oils) and encapsulated into chitosan, in order to combine the biodegradability and mechanical properties of PLA substrates with the antimicrobial and antioxidant properties of the chitosan⁻oil nanocoatings. It has been established that the morphology of the electrospun nanocoatings mainly depend on the average molecular weight (MW) of chitosan. Oil beads, encapsulated into the main chitosan nanofibers, were obtained using high-MW chitosan (Chit-H).

View Article and Find Full Text PDF

Composite microparticles of CaCO and two pectin samples (which differ by the functional group ratio) or corresponding nonstoichiometric polyelectrolyte complexes with different molar ratios (0.5, 0.9 and 1.

View Article and Find Full Text PDF

New types of composites were obtained by an autotemplate method for assembling hollow CaCO capsules by using pH-sensitive polymers. Five pectin samples, which differ in the methylation degree and/or amide content, and some nonstoichiometric polyelectrolyte complex dispersions, prepared with the pectin samples and poly(allylamine hydrochloride), were used to control the crystal growth. The morphology of the composites was investigated by scanning electron microscopy, and the polymorphs characteristics were investigated by FTIR spectroscopy.

View Article and Find Full Text PDF