The objective of the study was to characterize adaptations of hepatic metabolism of dairy cows of two Holstein strains with varying proportions of grazing in the feeding strategy. Multiparous autumn calving Holstein cows of New Zealand (NZH) and North American (NAH) strains were assigned to a randomized complete block design with a 2 x 2 factorial arrangement with two feeding strategies that varied in the proportions of pasture and supplementation: maximum pasture and supplementation with a pelleted concentrate (MaxP) or fixed pasture and supplementation with a total mixed ration (FixP) from May through November of 2018. Hepatic biopsies were taken at - 45 ± 17, 21 ± 7, 100 ± 23 and 180 ± 23 days in milk (DIM), representing prepartum, early lactation, early mid-lactation and late mid-lactation.
View Article and Find Full Text PDFThe objective of this study was to assess hepatic ATP synthesis in Holstein cows of North American and New Zealand origins and the gluconeogenic pathway, one of the pathways with the highest ATP demands in the ruminant liver. Autumn-calving Holstein cows of New Zealand and North American origins were managed in a pasture-based system with supplementation of concentrate that represented approximately 33% of the predicted dry matter intake during 2017, 2018, and 2019, and hepatic biopsies were taken during mid-lactation at 174 ± 23 days in milk. Cows of both strains produced similar levels of solids-corrected milk, and no differences in body condition score were found.
View Article and Find Full Text PDFIn pasture-based systems, there are nutritional and climatic challenges exacerbated across lactation; thus, dairy cows require an enhanced adaptive capacity compared with cows in confined systems. We aimed to evaluate the effect of lactation stage (21 vs. 180 days in milk, DIM) and Holstein genetic strain (North American Holstein, NAH, n = 8; New Zealand Holstein, NZH, n = 8) on metabolic adaptations of grazing dairy cows through plasma metabolomic profiling and its association with classical metabolites.
View Article and Find Full Text PDFBackground: In dairy mixed production systems, maximizing pasture intake and total mixed ration (TMR) supplementation are management tools used to increase dry matter and energy intake in early lactation. The objective was to evaluate metabolic and endocrine profiles and hepatic gene expression of Holstein cows fed either TMR ad libitum (without grazing) or diets combining TMR (50 % ad libitum DM intake) and pasture with different grazing strategies (6 h in one grazing session or 9 h in two grazing sessions) in early lactation. Pluriparous cows were grouped by calving date, blocked within group by body weight and body condition score (BCS) and randomly assigned to one of three feeding strategies from calving (day 0) to 60 days postpartum: control cows fed TMR ad libitum (G0; confined cows fed 100 % TMR without access to pasture), pasture grazing with 6 h of access in one session supplemented with 50 % TMR (G1), and 9 h of access in two sessions supplemented with 50 % TMR (G2).
View Article and Find Full Text PDF