CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules.
View Article and Find Full Text PDFBased on the determination of single crystal XRD structures of potassium hexacyanidometallates and on IR, and Raman data, here we propose for the first time the occurrence of an electron-deficient bonding between the N end of the CN ligand and the K metal center. The crystal structures of K[M(CN)]·xHO (M = Fe(ii), Ru(ii), Os(ii), Co(iii), Rh(iii), Ir(iii), Pt(iv)) reveal the presence of four types of CNK interactions: (i) a linear CN-K bond, (ii) the N ends in a bipodal coordination involving two K atoms, (iii) the N ends in a tripodal coordination mode involving three K atoms and (iv) the N ends and the K atoms with the largest K-N distances within the subseries that can be attributed to the electrostatic interactions. The bi- and tripodal coordination modes between the N end of the CN ligand and K ions are atypical and their nature is discussed in this contribution.
View Article and Find Full Text PDFCharacterization and control of surfaces and interfaces are critical for photovoltaic and photocatalytic applications. In this work, we propose CHNHPbI (MAPI) perovskite slab models whose energy levels, free of quantum confinement, explicitly consider the spin-orbit coupling and thermal motion. We detail methodological tools based on the density functional theory that allow achieving these models at an affordable computational cost, and analytical corrections are proposed to correct these effects in other systems.
View Article and Find Full Text PDFCuprous oxide has been conceived as a potential alternative to traditional organic hole-transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results do not yet show this trend. More detailed knowledge about the CuO/perovskite interface is mandatory to improve the photoconversion efficiency.
View Article and Find Full Text PDFEvaluating the availability of molecular oxygen (O ) and energy of excited states in the retinal binding site of rhodopsin is a crucial challenging first step to understand photosensitizing reactions in wild-type (WT) and mutant rhodopsins by absorbing visible light. In the present work, energies of the ground and excited states related to 11-cis-retinal and the O accessibility to the β-ionone ring are evaluated inside WT and human M207R mutant rhodopsins. Putative O pathways within rhodopsins are identified by using molecular dynamics simulations, Voronoi-diagram analysis, and implicit ligand sampling while retinal energetic properties are investigated through density functional theory, and quantum mechanical/molecular mechanical methods.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFOrganic-inorganic hybrid halide perovskites compounds are emerging as new materials with great potential for efficient solar cells. This paper explores the possibility of increasing their photovoltaic efficiency through sub-bandgap absorption by way of the in gap band (IGB) concept. Thus, we assess the formation of an in gap band as well as its effect on the absorption features of Organic-inorganic hybrid halide perovskites CHNHPbI (MAPI).
View Article and Find Full Text PDFActivated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention.
View Article and Find Full Text PDFExperimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests.
View Article and Find Full Text PDFActivated carbon (AC) is employed in drinking water purification without almost any knowledge about the adsorption mechanism of persistent organic pollutants (POPs) onto it. Hexachlorocyclohexane (HCH) is an organochlorinated contaminant present in water and soils of banana crops production zones of the Caribbean. The most relevant isomers of HCH are γ-HCH and β-HCH, both with great environmental persistence.
View Article and Find Full Text PDFSpectral shifts of rhodopsin, which are related to variations of the electron distribution in 11-cis-retinal, are investigated here using the method of deformed atoms in molecules. We found that systems carrying the M207R and S186W mutations display large perturbations of the π-conjugated system with respect to wild-type rhodopsins. These changes agree with the predicted behavior of the bond length alternation (BLA) and the blue shifts of vertical excitation energies of these systems.
View Article and Find Full Text PDFA metastable carbon nanotube with single, double, and triple bonds has been predicted from ab initio simulation. It results from the relaxation of an ideal carbon nanotube with chirality (2,1), without any potential barrier between the ideal nanotube and the new structure. Ten-membered carbon rings are formed by breaking carbon bonds between adjacent hexagons; eight-membered rings, already present in the ideal structure, become the smallest rings.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is a pathological condition associated with blindness due to progressive retinal degeneration. RP-linked mutations lead to changes at the retinal binding pocket and in the absorption spectra. Here, we evaluate the geometries, electronic effects, and vertical excitation energies in the dark state of mutated human rhodopsins carrying the abnormal substitutions M207R or S186W at the retinal binding pocket.
View Article and Find Full Text PDFJ Chem Phys
October 2007
Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian.
View Article and Find Full Text PDF