A series of ruthenium complexes of formulae [RuCl(triazenide)(-cymene)] have been synthesized using as ligand a triazenide monofunctionalized with an N-heterocyclic moiety. Nuclear magnetic resonance, high resolution mass spectrometry and X-ray diffraction were used to characterize the triazenide ligands and their complexes. In addition, these ruthenium complexes catalyzed the reduction of nitrobenzene to aniline in the presence of sodium borohydride and ethanol as solvent at room temperature.
View Article and Find Full Text PDFDye-sensitized solar cells (DSSCs) are an increasingly attractive alternative energy source because of their low cost. Therefore, researchers have intensified efforts over the past decade to increase their energy conversion efficiency by employing new materials in each DSSC component. The present research focuses on synthesizing electrospun nanofibers as a potential new material as a counter electrode in DSSCs.
View Article and Find Full Text PDFMembranes (Basel)
March 2022
Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth.
View Article and Find Full Text PDFAn important challenge in the field of anticancer chemotherapy is the search for new species to overcome the resistance of standard drugs. An interesting approach is to link bioactive ligands to metal fragments. In this work, we have synthesized a set of -cymene-Ru or cyclopentadienyl-M (M = Rh, Ir) complexes with four chrysin-derived pro-ligands with different -OR substituents at position 7 of ring A.
View Article and Find Full Text PDFElectrospun nanofibers are used for many applications due to their large surface area, mechanical properties, and bioactivity. Bacterial biofilms are the cause of numerous problems in biomedical devices and in the food industry. On the other hand, these bacterial biofilms can produce interesting metabolites.
View Article and Find Full Text PDFIn recent decades, there has been an increase in the research for the development and improvement of dye sensitized solar cells (DSSCs), owing to their singular advantages such as greater efficiency in energy conversion and overall performance in adverse environmental conditions. Therefore, work is carried out to enhance the energy efficiency of the components of the DSSCs: photoanode, counter-electrode, electrolyte, and dye sensitizer layer. Electrospun nanofibers in particular, have showed to be a novel alternative as components in DSSCs, mainly for energy conversion and as collector materials due in part to their tridimensional structure, high contact surface area and conductivity.
View Article and Find Full Text PDFAn approach to solve the limitations of autologous bone grafting procedures in bone injury treatment is to develop bioactive coatings in the implantation system. The objective of this work is to compare the temperature effect on the stability of hydroxyapatite, graphene, and collagen colloidal suspensions to be used as biocompatible and bioactive coatings on a carbon fiber composite surface. Synthesized hydroxyapatite was assessed by X-ray diffraction.
View Article and Find Full Text PDF