Protein sources in maternal diet are important for mammary gland differentiation and milk protein; however, few studies have examined the metabolic and cellular adaptations of mothers based on protein source diets during pregnancy and lactation, and leptin concentration in offspring. We evaluated metabolic parameters and maternal key organs and milk components in mothers at the end of lactation, who were fed different sources of proteins. In postnatal day 110 and 250, we studied development parameters and leptin in male offspring.
View Article and Find Full Text PDFKey Points: Maternal obesity predisposes to metabolic dysfunction in male and female offspring Maternal high-fat diet consumption prior to and throughout pregnancy and lactation accelerates offspring metabolic ageing in a sex-dependent manner This study provides evidence for programming-ageing interactions ABSTRACT: Human epidemiological studies show that maternal obesity (MO) shortens offspring life and health span. Life course cellular mechanisms involved in this developmental programming-ageing interaction are poorly understood. In a well-established rat MO model, female Wistar rats ate chow (controls (C)) or high energy, obesogenic diet to induce MO from weaning through pregnancy and lactation.
View Article and Find Full Text PDFMexican Ninoa and Queretaro (Qro) TcI strains of Trypanosoma cruzi have shown different degrees of virulence, and the two strains produce heterogeneous immune responses in the hearts of infected mice. This work shows that the same strains can invade the intestine by an intraperitoneal route and establish an infection, mainly in the colon. The three segments of the small intestine (duodenum, jejunum and ileum) were infected to a lesser degree than the colon.
View Article and Find Full Text PDFTuberculosis is one of the leading causes of mortality produced by an infectious agent. Different strategies including bioinformatics are currently being tested to identify and improve vaccines against tuberculosis. Comparative genome analysis between Streptomyces coelicolor and Mycobacterium tuberculosis suggest that both descend from a common Actinomycete ancestor.
View Article and Find Full Text PDF